Skip to main content
Log in

Fano Resonance Using Surface Plasmon Polaritons in a Nano-disk Resonator Coupled to Perpendicular Waveguides for Amplitude Modulation Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, an all-optical plasmonic modulator is proposed. The structure consists of an InGaAsP nano-disk resonator, surrounded by a Si ring-shaped resonator which is located inside a circular cavity, and two perpendicular metal–insulator-metal plasmonic waveguides. The structure also contains a graded stub filter to separate the control signal from the data signal at the output port. The horizontal and vertical waveguides are used for data and control signals, respectively. Using two separate waveguides for data and control signals causes a suitable isolation between two such signals. The finite-difference time-domain (FDTD) method is used for numerical investigation of the proposed structure, and we use a very detailed Drude-Lorentz model for modeling Ag. To provide more insight, the time-domain behavior of the designed amplitude modulator is also investigated. It is worth mentioning that the Kerr effect is used to modulate the data signal. The most remarkable advantages of the proposed structure are high extinction ratio, isolated data and control ports, low pump intensity, tunable data wavelength, small footprint, and simple structure. Based on the mentioned properties, this modulator has the potential to be used in complex integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Khial PP, White AD, Hajimiri A (2018) Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat Photonics 12(11):671–675

    Article  CAS  Google Scholar 

  2. Cohen RA, Amrani O, Ruschin S (2018) Response shaping with a silicon ring resonator via double injection. Nat Photonics 12(11):706–712

    Article  CAS  Google Scholar 

  3. Liu XJ, Ren ML, Pan Q, Zhang XR, Ma J, Wu XY The Zak phase calculation of one-dimensional photonic crystals with classical and quantum theory. Physica E: Low Dimens Syst Nanostruct 126:114415

  4. Farmani A, Mir A, Irannejad M (2019) 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36(4):811–818

    Article  CAS  Google Scholar 

  5. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  PubMed  Google Scholar 

  6. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  7. Khani S, Danaie M, Rezaei P, Shahzadi A (2020) Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz 74(1–2):61–71

    Article  Google Scholar 

  8. Xue Q, Tang X, Li Y, Liu H, Duan X (2019) Contactless and simultaneous measurement of water and acid contaminations in oil using a flexible microstrip sensor. ACS sensors 5(1):171–179

    Article  CAS  Google Scholar 

  9. Khani S, Mousavi SMH, Danaie M, Rezaei P (2018) Tunable compact microstrip dual-band bandpass filter with tapered resonators. Microw Opt Technol Lett 60(5):1256–1261

    Article  Google Scholar 

  10. Khani S, Danaie M, Rezaei P (2019) Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integr Circ Sig Process 98(2):367–376

    Article  Google Scholar 

  11. Ye Y, Xie Y, Song T, Wang Y, Chai J, Liu B, Liu Y (2019) Design of a novel plasmonic splitter with variable transmissions and selectable channels. IEEE Trans Nanotechnol 18:617–625

    Article  CAS  Google Scholar 

  12. Yu Y, Si J, Ning Y, Sun M, Deng X (2017) Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler. Opt Lett 42(2):187–190

    Article  CAS  PubMed  Google Scholar 

  13. Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Phys E 104:233–240

    Article  CAS  Google Scholar 

  14. Heidemann BR, Chiamenti I, Oliveira MM, Muller M, Fabris JL (2017) Functionalized long period grating-plasmonic fiber sensor applied to the detection of glyphosate in water. J Lightwave Technol 36(4):863–870

    Article  Google Scholar 

  15. Farmani H, Farmani A, Biglari Z (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys E 116:113730

    Article  CAS  Google Scholar 

  16. Zafar R, Chauhan P, Salim M, Singh G (2019) Metallic slit–loaded ring resonator–based plasmonic demultiplexer with large crosstalk. Plasmonics 14(4):1013–1017

    Article  CAS  Google Scholar 

  17. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102

    Article  Google Scholar 

  18. Singh M, Raghuwanshi SK, Prakash O (2019) Modeling of grating assisted hybrid plasmonic filter and its on-chip gas sensing application. IEEE Sens J 19(11):4039–4044

    Article  CAS  Google Scholar 

  19. Khani S, Danaie M, Rezaei P (2019) Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Phys E 113:25–34

    Article  CAS  Google Scholar 

  20. Qi Y, Zhou P, Zhang T, Zhang X, Wang Y, Liu C, Wang X (2019) Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities. Results Phys 14:102506

    Article  Google Scholar 

  21. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron 13(4):161–171

    Article  Google Scholar 

  22. Liang S, Jiang C, Yang Z, Li D, Zhang W, Mei T, Zhang D (2018) Plasmonic slow light waveguide with hyperbolic metamaterials claddings. J Opt 20(6):065001

    Article  CAS  Google Scholar 

  23. Furuki T, Ota M, Fukuda M (2018) Plasmonic slow light device using superfocusing on a bow-tied metallic waveguide. Opt Lett 43(14):3232–3235

    Article  CAS  PubMed  Google Scholar 

  24. Keleshtery MH (2016) Analysis and investigation of slow light based on plasmonic induced transparency in metal-dielectric-metal ring resonator in a waveguide system with different geometrical designs. Opt Photonics J 6(08):177

    Article  CAS  Google Scholar 

  25. Yuan M, Li Y, Lu Y, Zhang Y, Zhang Z, Zhang X, Zhang W (2019) High-performance and compact broadband terahertz plasmonic waveguide intersection. Nanophotonics 8(10):1811–1819

    Article  Google Scholar 

  26. Rezaei MH, Zarifkar A, Miri M (2018) Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt Mater 84:572–578

    Article  CAS  Google Scholar 

  27. Rezaei MH, Boroumandi R, Zarifkar A, Farmani A (2019) Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides. IET Optoelectron 14(1):37–43

    Article  Google Scholar 

  28. Daneshfar N, Foroughi H (2016) Optical bistability in plasmonic nanoparticles: effect of size, shape and embedding medium. Phys E 83:268–274

    Article  CAS  Google Scholar 

  29. Khani S, Danaie M, Rezaei P (2020) Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions. Opt Commun 126359

  30. Moon K, Park S (2019) Graphene-based plasmonic switch using resonant coupling to the local plasmon resonance. Phys Rev Appl 11(3):034074

    Article  CAS  Google Scholar 

  31. Khani S, Danaie M, Rezaei P (2020) Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct 106481.

  32. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct 135:106244

    Article  CAS  Google Scholar 

  33. Luan J, Fan M, Zheng P, Yang H, Hu G, Yun B, Cui Y (2019) Design and optimization of a graphene modulator based on hybrid plasmonic waveguide with double low-index slots. Plasmonics 14(1):133–138

    Article  CAS  Google Scholar 

  34. Zheng P, Yang H, Fan M, Hu G, Zhang R, Yun B, Cui Y (2018) A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide. Plasmonics 13(6):2029–2035

    Article  CAS  Google Scholar 

  35. Janjan B, Zarifkar A, Miri M (2016) Ultra-compact high-speed electro-optical modulator with extremely low energy consumption based on polymer-filled hybrid plasmonic waveguide. Plasmonics 11(2):509–514

    Article  CAS  Google Scholar 

  36. Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Elder DL (2018) Low-loss plasmon-assisted electro-optic modulator. Nature 556(7702):483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhasker P, Norman J, Bowers J, Dagli N (2020) Low voltage, high optical power handling capable, bulk compound semiconductor electro-optic modulators at 1550 nm. J Lightwave Technol 38(8):2308–2314

    Article  CAS  Google Scholar 

  38. Chung S, Nakai M, Hashemi H (2019) Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt Express 27(9):13430–13459

    Article  CAS  PubMed  Google Scholar 

  39. Li F, Tang T, Li J, Luo L, Li C, Shen J, Yao J (2020) Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves. J Alloy Compd 826:154174

    Article  CAS  Google Scholar 

  40. Liao C, Li C, Wang C, Wang Y, He J, Liu S, Wang Y (2019) High-speed all-optical modulator based on a polymer nanofiber bragg grating printed by femtosecond laser. ACS Appl Mater Interfaces 12(1):1465–1473

    Article  PubMed  CAS  Google Scholar 

  41. Yu S, Wu X, Chen K, Chen B, Guo X, Dai D, Shen YR (2016) All-optical graphene modulator based on optical Kerr phase shift. Optica 3(5):541–544

    Article  CAS  Google Scholar 

  42. Shi X, Zheng S, Chi H, Jin X, Zhang X (2013) All-optical modulator with long range surface plasmon resonance. Opt Laser Technol 49:316–319

    Article  CAS  Google Scholar 

  43. Ding J, Ji R, Zhang L, Yang L (2013) Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator. J Lightwave Technol 31(14):2434–2440

    Article  Google Scholar 

  44. Yang L, Ding J (2014) High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth. J Lightwave Technol 32(5):966–970

    Article  CAS  Google Scholar 

  45. Koch U, Messner A, Hoessbacher C, Heni W, Josten A, Baeuerle B, Leuthold J (2019) Ultra-compact terabit plasmonic modulator array. J Lightwave Technol 37(5):1484–1491

    Article  CAS  Google Scholar 

  46. Nozhat N, Alikomak H, Khodadadi M (2017) All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt Commun 392:208–213

    Article  CAS  Google Scholar 

  47. Noor SL, Dens K, Reynaert P, Catthoor F, Lin D, Van Dorpe P, Naeemi A (2020) Modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic gates. J Light Technol

  48. Khani S, Danaie M, Rezaei P (2020) Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct Fundam Appl 100802

  49. Khani S, Danaie M, Rezaei P (2019) All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 15:869–879

    Article  CAS  Google Scholar 

  50. Khani S, Danaie M, Rezaei P (2021) Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J Comput Electron 20(1):442–457

    Article  CAS  Google Scholar 

  51. Gardes FY, Brimont A, Sanchis P, Rasigade G, Marris-Morini D, O’Faolain L, Krauss TF (2009) High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt Express 17(24):21986–21991

    Article  CAS  PubMed  Google Scholar 

  52. Degl’Innocenti R, Jessop DS, Shah YD, Sibik J, Zeitler JA, Kidambi PR, Ritchie DA (2014) Terahertz optical modulator based on metamaterial split-ring resonators and graphene. Opt Eng 53(5):057108

    Article  CAS  Google Scholar 

  53. Zhang X, Chung CJ, Hosseini A, Subbaraman H, Luo J, Jen AK, Chen RT (2015) High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol 34(12):2941–2951

    Article  Google Scholar 

  54. Wang X, Jiang H, Chen J, Wang P, Lu Y, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19(20):19415–19421

    Article  CAS  PubMed  Google Scholar 

  55. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Commun 420:147–156

    Article  CAS  Google Scholar 

  56. Johnson SG, Joannopoulos JD (2001) Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8(3):173–190

    Article  CAS  PubMed  Google Scholar 

  57. Sederberg S, Driedger D, Nielsen M, Elezzabi AY (2011) Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt Express 19(23):23494–23503

    Article  CAS  PubMed  Google Scholar 

  58. Zhou F, Du W (2018) Ultrafast all-optical plasmonic graphene modulator. Appl Opt 57(23):6645–6650

    Article  CAS  PubMed  Google Scholar 

  59. Moradiani F, Seifouri M, Abedi K, Gharakhili FG (2020) High extinction ratio all-optical modulator using a vanadium-dioxide integrated hybrid plasmonic waveguide. Plasmonics 1–10

  60. Guo X, Liu R, Hu D, Hu H, Wei Z, Wang R, Zhang G (2020) Efficient all-optical plasmonic modulators with atomically thin Van Der Waals heterostructures. Adv Mater 32(11):1907105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: Shiva Khani and Mohammad Danaie; writing—original draft preparation: Shiva Khani; writing—review and editing: Mohammad Danaie and Shiva Khani; supervision Mohammad Danaie and Pejman Rezaei.

Corresponding author

Correspondence to Shiva Khani.

Ethics declarations

Ethical Approval

We the undersigned declare that the manuscript entitled “Fano-resonance Using Surface Plasmon Polaritons in a Nano-disk Resonator with Ring Resonators Coupled to Cross Waveguides for Amplitude Modulation Application” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, S., Danaie, M. & Rezaei, P. Fano Resonance Using Surface Plasmon Polaritons in a Nano-disk Resonator Coupled to Perpendicular Waveguides for Amplitude Modulation Applications. Plasmonics 16, 1891–1908 (2021). https://doi.org/10.1007/s11468-021-01447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01447-0

Keywords

Navigation