Skip to main content
Log in

Looking Into Surface Plasmon Polaritons Guided by the Acoustic Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Acoustic metamaterials are introduced as the structures with the alternating elements possessing effective properties that can be tuned seeking for the dramatic control on wave propagation. Homogenization of the structure under consideration is needed aiming to calculate permittivity of metamaterial. We present theoretical outcomes studying an acoustic composite possessing negative effective parameters in the acoustic frequency range. An acoustic metamaterial with an the alternating nanowires arranged in a building block and embedded in a host material was investigated. Propagation of surface plasmon polaritons at the metamaterial interface was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

All simulation parameters of this study are included in this manuscript.

References

  1. Pennec Y, Vasseur JO, Djafari-Rouhani B, Dobrzyński L, Deymier PA (2010) Two-dimensional phononic crystals: Examples and Applications. Surf Sci Rep 65:229–291

    Article  CAS  Google Scholar 

  2. Ge H, Yang M, Ma C et al (2017) Breaking the barriers: advances in acoustic functional materials. Nat Sci Review 5:159–182

    Article  Google Scholar 

  3. Khelif A, Adibi A (2015) Phononic crystals: fundamentals and applications. Springer, Berlin

    Google Scholar 

  4. Ma G, Sheng P (2016) Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2:e1501595

    Article  Google Scholar 

  5. Lin S-CS, Huang TJ, Sun J-H, Wu T-T (2009) Gradient-index phononic crystals. Phys Rev B 79:094302

    Article  Google Scholar 

  6. Titovich AS, Norris AN, Haberman MR (2016) A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements. J Acoust Soc Am 139:3357–3364

    Article  CAS  Google Scholar 

  7. Yi K, Collet M, Ichchou M, Li L (2016) Flexural waves focusing through shunted piezoelectric patches. Smart Mater Struct 25:075007

    Article  Google Scholar 

  8. Yong G, Hong-Xiang S, Chen L et al (2016) Acoustic focusing by an array of heat sources in air. Appl Phys Express 9:066701

    Article  Google Scholar 

  9. Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70:055602

    Article  Google Scholar 

  10. Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5:452–456

    Article  CAS  Google Scholar 

  11. Lee SH, Park CM, Seo YM, Wang ZG, Kim CK (2010) Composite acoustic medium with simultaneously negative density and modulus. Phys Rev Lett 104:054301

    Article  Google Scholar 

  12. Liu Y, Bartal G, Zhang X (2008a) All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Exp 16(15):439–448

    Google Scholar 

  13. Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Wong ZJ, Wang Y, O’Brien K, Rho J, Yin X, Zhang S, Fang N, Yen T-J, Zhang X (2017) Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J Opt 19:084007

    Article  Google Scholar 

  15. Fan B, Filonov D, Ginzburg P, Podolskiy VA (2018) Low-frequency nonlocal and hyperbolic modes in corrugated wire metamaterials. Opt Express 26:17541–17548

    Article  CAS  Google Scholar 

  16. Ioannidis T, Gric T, Gorodetsky A, Trofimov A, Rafailov E (2019) Enhancing the properties of plasmonic nanowires. Materials research express 6:1–8

    Article  Google Scholar 

  17. Ioannidis T, Gric T, Rafailov E (2020) Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range. Opt Quant Electron 52:1–12

    Article  CAS  Google Scholar 

  18. Starko-Bowes R, Atkinson J, Newman W, Hu H, Kallos T, Palikaras G, Fedosejevs R, Pramanik S, Jacob Z (2015) Optical characterization of epsilon near zero, epsilon near pole and hyperbolic response in nanowire metamaterials. J Opt Soc Am B 32:2074–2080

    Article  CAS  Google Scholar 

  19. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley-IEEE Press, Hoboken/New Jersey

    Book  Google Scholar 

  20. Krokhin AA, Arriaga J, Gumen LN (2003) Speed of sound in periodic elastic composites. Phys Rev Lett 91:264302

    Article  CAS  Google Scholar 

  21. Norris AN, Shuvalov AL, Kutsenko AA (2012) Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc Roy Soc A-Math Phy Eng Sci 468:1629–1651

    Google Scholar 

  22. Liu Y, Bartal G, Zhang X (2008b) All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Exp 16:15439–15448

    Article  CAS  Google Scholar 

  23. Podolskiy VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys Rev B 71:201101

    Article  Google Scholar 

  24. Gric T, Hess O (2017) Surface plasmon polaritons at the interface of two nanowire metamaterials. J Opt 19:085101

    Article  Google Scholar 

  25. Ambati M, Fang N, Sun C, Zhang X (2007) Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 75:195447

    Article  Google Scholar 

  26. Nelson SO (1983) Observations on the density dependence of the dielectric properties of particulate materials. J Microw Power 18(2):143–152

    Article  Google Scholar 

  27. Nelson SO (1984) Density dependence of the dielectric properties of wheat and whole-wheat flour. J Microw Power 19(1):55–64

    Article  Google Scholar 

  28. Klein A (1981) Microwave determination of moisture in coal—comparison of attenuation and phase measurement. J Microw Power 16(3&4):289–304

    Article  Google Scholar 

  29. Kent M (1977) Complex permittivity of fish meal: a general discussion of temperature, density, and moisture dependence. J Microw Power 12(4):341–345

    Article  Google Scholar 

  30. Berryman G (1809) Long-wavelength propagation in composite elastic media I. Spherical inclusions. J Acoust Soc Am 1980:68

    Google Scholar 

  31. Yao BJ, Wang Y, Tsai K-T, Liu Z, Yin X, Bartal G, Stacy AM, Wang Y-L, Zhang X (2011) Design, fabrication and characterization of indefinite metamaterials of nanowires. Phil Trans R Soc A 369:3434–3446

    Article  CAS  Google Scholar 

  32. Guenneau S, Movchan A, P`etursson G, Ramakrishna SA, (2007) Acoustic metamaterials for sound focusing and confinement. New J Phys 9:399

    Article  Google Scholar 

  33. Chen H, Chan CT (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91:183518

    Article  Google Scholar 

  34. Torrent D, S`anchez-Dehesa J, (2008) Acoustic cloaking in two dimensions: A feasible approach. New J Phys 10:063015

    Article  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No 713694 and from Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/R024898/1). The work of E.U. Rafailov was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17.11.2020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data curation, and methodology, T.I..; investigation, formal analysis, software, visualization, writing—original draft preparation, writing—review, and editing, T.I.; T.G.; E.R.; supervision and revision of the manuscript and validation, T.G.; E.R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tatjana Gric.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannidis, T., Gric, T. & Rafailov, E. Looking Into Surface Plasmon Polaritons Guided by the Acoustic Metamaterials. Plasmonics 16, 1835–1839 (2021). https://doi.org/10.1007/s11468-021-01377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01377-x

Keywords

Navigation