Skip to main content
Log in

Preparation of CuO Nanowires/Ag Composite Substrate and Study on SERS Activity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, surface-enhanced Raman scattering (SERS) substrates with high detection sensitivity were prepared by thermal oxidation, and magnetron sputtering and the SERS properties of these substrates were studied using methylene blue as probe molecule. The result showed that the SERS substrate has good enhancement effect (analytical enhancement factor ~ 107), stability, and reproducibility. The minimum detection limit for methylene blue can reach 10–9 M. The SERS intensity and the concentration has a linear dependence (R2 > 0.9). This suggests that the substrate has great potential in the detection of biological and chemical substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Owens NA, Pinter A, Porter MD (2019) Surface-enhanced resonance Raman scattering for the sensitive detection of a tuberculosis biomarker in human serum. J Raman Spectrosc 50(1):15–25

    Article  CAS  Google Scholar 

  2. Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, Sim HYF, Kao YC, An Q, Ling XY (2019) Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev 48(3):731–756

    Article  CAS  Google Scholar 

  3. Yaseen T, Pu H, Sun DT (2018) Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci Technol 72:162–174

    Article  CAS  Google Scholar 

  4. Koo KM, Wang J, Richards RS, Farrell A, Yaxley J, Samaratunga H, Teloken PE, Roberts MJ, Coughlin G, Lavin MFJAN (2018) Design and clinical verification of surface enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano 12(8):8362–8371

    Article  CAS  Google Scholar 

  5. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  6. Zhang G, Deng C, Shi H, Zou B, Li Y, Liu T, Wang W (2017) ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Appl Surf Sci 402:154–160

    Article  CAS  Google Scholar 

  7. Ding S, Yi J, Li J, Ren B, Wu D, Panneerselvam R, Tian ZJNRM (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1(6):16021

    Article  CAS  Google Scholar 

  8. Liu Y, Zhou J, Wang B, Jiang T, Ho H-P, Petti L, Mormile P (2015) Au@ Ag core–shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys Chem Chem Phys 17(10):6819–6826

  9. Scarabelli L, Coronadopuchau M, Ginercasares JJ, Langer J, Lizmarzan LMJAN (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8(6):5833–5842

    Article  CAS  Google Scholar 

  10. Zou J, Song W, Xie W, Huang B, Yang H, Luo Z (2018) A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection. Nanotechnology 29(11):115703

    Article  Google Scholar 

  11. Cathcart N, Coombs N, Gourevich I, Kitaev V (2016) Synthesis and sensing properties of D 5h pentagonal silver star nanoparticles. Nanoscale 8(43):18282–18290

    Article  CAS  Google Scholar 

  12. Yang Y, Meng G (2010) Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J Appl Phys 107(4):044315

    Article  Google Scholar 

  13. Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N (2012) Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23(11):115501

    Article  Google Scholar 

  14. Yang M, He J (2011) Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J Colloid Interface Sci 355(1):15–22

    Article  CAS  Google Scholar 

  15. Yang L, Yang Y, Ma Y, Li S, Wei Y, Huang Z, Long N (2017) Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials 7(11):398

    Article  Google Scholar 

  16. Li F, Yuan Y, Luo J, Qin Q, Wu J, Li Z, Huang X (2010) Synthesis and characterization of ZnO–Ag core–shell nanocomposites with uniform thin silver layers. Appl Surf Sci 256(20):6076–6082

    Article  CAS  Google Scholar 

  17. Jiang L, Yin P, You T, Wang H, Lang X, Guo L, Yang S (2012) Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles. Chem Phys Chem 13(17):3932–3936

    Article  CAS  Google Scholar 

  18. Bontempi N, Carletti L, De Angelis C, Alessandri I (2016) Plasmon-free SERS detection of environmental CO 2 on TiO 2 surfaces. Nanoscale 8(6):3226–3231

    Article  CAS  Google Scholar 

  19. Zhu T, Wang H, Zang L, Jin S, Guo S, Park E, Mao Z, Jung YMJM (2020) Flexible and reusable Ag coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde. Molecules 25(5):1199

    Article  CAS  Google Scholar 

  20. Xu X, Feng Y (2019) Hierarchical TiO2–Ag composite with three-dimensional hot spots for trace detection. J Alloy Compd 811:151994

    Article  CAS  Google Scholar 

  21. Du J, Zhu Q, Teng F, Wang Y, Lu N (2019) Ag nanoparticles/ZnO nanorods for highly sensitive detection of small molecules with laser desorption/ionization mass spectrometry. Talanta 192:79–85

    Article  CAS  Google Scholar 

  22. Doan QK, Nguyen MH, Sai CD, Pham VT, Mai HH, Pham NH, Bach TC, Nguyen VT, Nguyen TT, Ho KH (2020) Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self cleaning surface enhanced Raman applications. Appl Surf Sci 505:144593

    Article  CAS  Google Scholar 

  23. Li ZH, Bai JH, Zhang X, Lv JM, Fan CS, Zhao YM, Wu ZL, Xu HJ (2020) Facile synthesis of Au nanoparticle-coated Fe3O4 magnetic composite nanospheres and their application in SERS detection of malachite green. Molecular and Biomolecular Spectroscopy, Spectrochimica Acta Part A

    Google Scholar 

  24. Yang Z, Ma C, Wang W, Zhang M, Hao X, Chen SJJoC, Science I, (2019) Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity. J Colloid Interface Sci 557:156–167

    Article  CAS  Google Scholar 

  25. Ye F, Ju S, Liu Y, Jiang Y, Chen H, Ge L, Yan C, Yuan AJCR, Technology, (2019) Ag-CuO nanocomposites: surface-enhanced raman scattering substrate and photocatalytic performance. Cryst Res Technol 54(7):1800257

    Article  Google Scholar 

  26. Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators B: Chemical 135(1):298–303

    Article  CAS  Google Scholar 

  27. Kim D-k, Ho Shin J, Sun Shin H, Yong Song J (2013) Single-crystalline CuO nanowire growth and its electrode-dependent resistive switching characteristics. J Appl Phys 114(4):043514

    Article  Google Scholar 

  28. Mumm F, Sikorski P (2011) Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays. Nanotechnology 22(10):105605

    Article  CAS  Google Scholar 

  29. Tang J, Yi Y, Wu J, Tang Y (2014) Porous Ag and Au hybrid nanostructures: synthesis, morphology, and their surface-enhanced Raman scattering properties. Phys B 433:138–143

    Article  CAS  Google Scholar 

  30. Shi Y, Yang W, Feng X, Feng L, Yue G, Wang Y (2015) Bio-inspired fabrication of copper oxide nanowire films with switchable wettability via a facile thermal oxidation method. RSC Advances 5(33):26107–26113

    Article  CAS  Google Scholar 

  31. Wang Y, Song W, Ruan W, Yang J, Zhao B, Lombardi JR (2009) SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag. J Phys Chem C 113(19):8065–8069

    Article  CAS  Google Scholar 

  32. Jayram ND, Aishwarya D, Sonia S, Mangalaraj D, Kumar PS, Rao GM, Science I (2016) Analysis on superhydrophobic silver decorated copper oxide nanostructured thin films for SERS studies. J Colloid 477:209–219

    Article  CAS  Google Scholar 

  33. Tran TH, Nguyen MH, Nguyen THT, Dao VPT, Nguyen QH, Sai CD, Pham NH, Bach TC, Ngac AB, Nguyen TT (2020) Facile fabrication of sensitive surface enhanced Raman scattering substrate based on CuO/Ag core/shell nanowires. Appl Surf Sci 509:145325

    Article  CAS  Google Scholar 

  34. Le Ru E, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

  35. Bharati MSS, Chandu B, Rao SV (2019) Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Advances 9(3):1517–1525

    Article  Google Scholar 

  36. Liu L, Pan F, Liu C, Huang L, Li W, Lu X (2018) TiO2 nanofoam–nanotube array for surface-enhanced Raman scattering. ACS Applied Nano Materials

  37. Tan X, Wang L, Cheng C, Yan X, Shen B, Zhang J (2016) Plasmonic MoO3−x @ MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem Commun 52(14):2893–2896

    Article  CAS  Google Scholar 

  38. Kundu S, Yi S-I, Ma L, Chen Y, Dai W, Sinyukov AM, Liang H (2017) Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA. CTAB and PVA scaffolds Dalton Transactions 46(29):9678–9691

    Article  CAS  Google Scholar 

  39. Kundu S, Chen Y, Dai W, Ma L, SinyukovLiang AMH (2017) Enhanced catalytic and SERS activities of size-selective Rh NPs on DNA scaffolds. J Mater Chem C 5(10):2577–2590

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangdong Province, China (Grant numbers 2018A030313018) and the Fundamental Research Funds for the Central Universities (Grant numbers 21619416).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Junqi Yang, Bingliang Chen, and Zhi Luo. The first draft of the manuscript was written by Bingliang Chen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhi Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, B., Peng, J. et al. Preparation of CuO Nanowires/Ag Composite Substrate and Study on SERS Activity. Plasmonics 16, 1059–1070 (2021). https://doi.org/10.1007/s11468-020-01358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01358-6

Keywords

Navigation