Skip to main content
Log in

Optimizing the Sensing Efficiency of Plasmonic Based Gas Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper investigates the behavior of the surface plasmon polaritons (SPPs) on dielectric-metal interface using Ag thin film on glass substrate. The Kretschman configuration, which is sensitive to the change in the local environment adjacent to Ag thin film, has been modeled using COMSOL Multiphysics, RF module. The graphical presentation for the change in excitation spectra of SPPs on the interface has been analyzed by adjusting the incident angle greater than critical angle of glass while keeping the thickness of Ag thin film constant. The cross-sectional view reveals that the maximum amplitude of electric field occurs at 43° incidence. In order to study the behavior of resonance dip at varying refractive index (from 1.00 to 1.01), the reflection spectra for transverse magnetic (TM) mode of incident light has been extracted using far-field analysis. To further explore the sensitivity and resolution of the device, nm/RIU is collected by using the change in the wavelength (nm) of SPPs for minimum reflection. The remarkably maximum sensitivity of the device has been calculated as 23,000 nm/RI and Q value calculated for Ag-based sensing is 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekgasit S et al (2005) Appl Spectrosc 59(5):661–667

    Article  CAS  Google Scholar 

  2. Dastmalchi B et al (2016) Advanced Optical Materials 4(1):177–184

  3. Iqbal T et al (2018) Plasmonics 1–9

  4. Han X, Liu K, Sun C (2019) Materials 12(9):1411

    Article  CAS  Google Scholar 

  5. Liaw J-W, Wu P-T (2008) Opt Express 16(7):4945–4951

    Article  Google Scholar 

  6. Tien P, Ulrich R (1970) JOSA 60(10):1325–1337

    Article  Google Scholar 

  7. Afsheen S et al (2018) Nanotechnology 29(38):385501

    Article  Google Scholar 

  8. Xiao Y et al (2003) Science 299(5614):1877–1881

    Article  CAS  Google Scholar 

  9. Cai H et al (2002) Analyst 127(6):803–808

    Article  CAS  Google Scholar 

  10. Karpova EV et al (2019) Analytical chemistry

  11. Solly K et al (2004) Assay Drug Dev Technol 2(4):363–372

    Article  CAS  Google Scholar 

  12. Iqbal T et al (2019) Plasmonics 14(2):493–499

    Article  Google Scholar 

  13. Teixeira FL (2008) IEEE Trans Antennas Propag 56(8):2150–2166

    Article  Google Scholar 

  14. Iqbal T (2018) Curr Appl Phys 18(11):1381–1387

    Article  Google Scholar 

  15. Iqbal T, Afsheen S (2016) Curr Appl Phys 16(4):453–458

    Article  Google Scholar 

  16. Li J, Wu N (2013) CRC Press

  17. Hossen MN et al (2018) Sensing and bio-sensing research 21:1–6

    Article  Google Scholar 

  18. Sreekanth KV et al (2016) Nat Mater 15(6):621

    Article  CAS  Google Scholar 

  19. Cunningham BT (2009) n. Label-Free Biosensors: Techniques and Applications 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahir Iqbal or Almas Bashir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsheen, S., Ahmad, A., Iqbal, T. et al. Optimizing the Sensing Efficiency of Plasmonic Based Gas Sensor. Plasmonics 16, 541–546 (2021). https://doi.org/10.1007/s11468-020-01318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01318-0

Keywords

Navigation