Skip to main content
Log in

Solar Selective Absorbers for High-efficiency Photothermal Conversion via Core–Shell Nanocone Structured Surface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nanostructured surface, a promising photon management strategy, enables to enhance photon-to-heat conversion efficiency by manipulating spectral radiative properties ranging from solar spectrum (0.3–2.5 μm) to mid-infrared spectrum (2.5–20 μm). Here, a core–shell nanocone structured surface made of silica core and tungsten shell as a solar selective absorber is introduced. The photothermal conversion efficiency (PTCE) is calculated in consideration of solar spectrum absorption and mid-infrared emission. It is obvious that high solar spectrum absorption and low mid-infrared emission are beneficial for high PTCE. The influence of structural parameters on the PTCE is studied, and then the absorption enhancement mechanism is elucidated in detail. Meanwhile, the influences of incident angle, polarized state, and lattice arrangement are also presented. The calculated results exhibit that our optimized solar absorber possesses the total solar absorption of 97.3% and total thermal emission of 7.6%, resulting in a maximum PTCE of 91.4% under one sun illumination conditions at normal incidence. Moreover, our solar selective absorber is independent to the incident angle and polarization state. The excellent photothermal conversion performance with wide-angle and polarization-insensitive properties for the solar selective absorber can serve as a good candidate for various solar thermal applications including seawater desalination, steam generation, thermophotovoltaic, and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo CF, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light: Sci. Appl 3(4):e160–e161

    Google Scholar 

  2. Farchado M, Rodríguez JM, San Vicente G, German N, Morales A (2018) Optical parameters of a novel competitive selective absorber for low temperature solar thermal applications. Sol. Energy Mater. Sol. Cells 178:234–239

    Article  CAS  Google Scholar 

  3. Cao F, Kraemer D, Tang L, Li Y, Litvinchuk AP, Bao J, Chen G, Ren Z (2015) A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability. Energy Environ Sci 8(10):3040–3048

    Article  CAS  Google Scholar 

  4. Ning Y, Wang J, Ou C, Sun C, Hao Z, Xiong B, Wang L, Han Y, Li H, Luo Y (2020) NiCr–MgF2 spectrally selective solar absorber with ultra-high solar absorptance and low thermal emittance. Sol Energy Mater Sol Cells 206:110219

    Article  CAS  Google Scholar 

  5. Bhatt R, Kravchenko I, Gupta M (2020) High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter. Sol Energy 197:538–545

    Article  CAS  Google Scholar 

  6. Hassan S, Doiron CF, Naik GV (2020) Optimum selective emitters for efficient thermophotovoltaic conversion. Appl Phys Lett 116(2):023903

    Article  Google Scholar 

  7. Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538

    Article  CAS  Google Scholar 

  8. Da Y, Xuan Y (2015) Perfect solar absorber based on nanocone structured surface for high-efficiency solar thermoelectric generators. Sci China Technol Sci 58(1):19–28

    Article  CAS  Google Scholar 

  9. Steinfeld A (2005) Solar thermochemical production of hydrogen––a review. Sol Energy 78(5):603–615

    Article  CAS  Google Scholar 

  10. Wang H, Sivan VP, Mitchell A, Rosengarten G, Phelan P, Wang L (2015) Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol Energy Mater Sol Cells 137:235–242

    Article  Google Scholar 

  11. Cao F, McEnaney K, Chen G, Ren Z (2014) A review of cermet-based spectrally selective solar absorbers. Energy Environ Sci 7(5):1615–1627

    Article  CAS  Google Scholar 

  12. Liu Y, Wu Z, Yin L, Zhang Z, Wu X, Wei D, Zhang Q, Cao F (2019) High-temperature air-stable solar absorbing coatings based on the cermet of MoSi2 embedded in SiO2. Sol Energy Mater Sol Cells 200:109946

    Article  CAS  Google Scholar 

  13. Thomas NH, Chen Z, Fan S, Minnich AJ (2017) Semiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversion. Sci Rep 7(1):1–6

    Article  Google Scholar 

  14. Nuru ZY, Arendse CJ, Khamlich S, Kotsedi L, Maaza M (2014) A Tantalum diffusion barrier layer to improve the thermal stability of AlxOy/Pt/AlxOy multilayer solar absorber. Sol Energy 107:89–96

    Article  CAS  Google Scholar 

  15. Wan W, Luo M, Su Y (2020) Ultrathin polarization-insensitive, broadband visible absorber based rectangular metagratings. Opt Commun 458:124857

    Article  CAS  Google Scholar 

  16. Chen M, He Y, Ye Q, Zhu J (2019) Tuning plasmonic near-perfect absorber for selective absorption applications. Plasmonics 14(6):1357–1364

    Article  CAS  Google Scholar 

  17. Ollier E, Dunoyer N, Szambolics H, Lorin G (2017) Nanostructured thin films for solar selective absorbers and infrared selective emitters. Sol Energy Mater Sol Cells 170:205–210

    Article  CAS  Google Scholar 

  18. Wu J, Zhou C, Yu J, Cao H, Li S, Jia W (2014) TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies. Opt Commun 329:38–43

    Article  CAS  Google Scholar 

  19. Wu J, Zhou C, Cao H, Hu A (2013) Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure. Opt Commun 309:57–63

    Article  CAS  Google Scholar 

  20. Ungaro C, Gray SK, Gupta MC (2013) Black tungsten for solar power generation. Appl Phys Lett 103(7):071105

    Article  Google Scholar 

  21. Wang H, Wang L (2013) Perfect selective metamaterial solar absorbers. Opt. Express 21(106):A1078–A1093

    Article  Google Scholar 

  22. Ye Q, Chen M, Cai W (2019) Numerically investigating a wide-angle polarization-independent ultra-broadband solar selective absorber for high-efficiency solar thermal energy conversion. Sol Energy 184:489–496

    Article  CAS  Google Scholar 

  23. Taflove A, Hagness SC (2005) Computational electrodynamics: The finite-difference. time-domain method, Artech House

    Google Scholar 

  24. Palik ED (1998) Handbook of optical constants of solids, Academic

  25. Fowles GR (1989) Introduction to modern optics, Courier Corporation

  26. AM1.5 solar spectrum irradiance data: https://rredc.nrel.gov/solar/spectra/am1.5.

  27. Chao CC, Wang CM, Chang JY (2010) Spatial distribution of absorption in plasmonic thin film solar cells. Opt Express 18(11):11763–11771

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (NSFC) (51906107), the Natural Science Foundation of Jiangsu Province (BK20190741), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB140015), and NUPT-SF (NY219033, NY220039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqiu Xie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Y., Xie, M. Solar Selective Absorbers for High-efficiency Photothermal Conversion via Core–Shell Nanocone Structured Surface. Plasmonics 16, 589–597 (2021). https://doi.org/10.1007/s11468-020-01317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01317-1

Keywords

Navigation