Skip to main content
Log in

Broadband Enhancement of Faraday Effect Using Magnetoplasmonic Metasurfaces

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Magnetooptical Faraday effect enables ultrafast photonic devices based on nonreciprocal polarization rotation; however, the intrinsic weakness of Faraday effect prevents miniaturization and practical applications of nonreciprocal photonic devices. Magnetoplasmonics offers new mechanisms for enhancing magnetooptical effects using surface plasmon resonances, which generally have narrow bandwidths. Using finite-difference time-domain modeling, we demonstrate a magnetoplasmonic metasurface, which remarkably enhances the Faraday effect in a wide spectral range. While Faraday rotation in a bare bismuth-substituted yttrium iron garnet film is below 0.02° in the studied range of 600–1600 nm, the proposed metasurface yields few degrees of rotation in a broad band with a maximum exceeding 6.5°, which indicates about three orders of magnitude enhancement. We also show that by optimizing the configuration of the system including the geometry and excitation parameters, the metasurface response and operation band can be tuned further, and rotation values higher than 20° can be achieved. Finally, we present guidelines for designing magnetoplasmonic metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source is considered to be in the x direction (θ = 0°) for these calculations

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zvezdin AK, Kotov VA (1997) Modern magnetooptics and magnetooptical materials. Taylor & Francis Group, New York

    Book  Google Scholar 

  2. Kimel AV, Kirilyuk A, Hansteen F et al (2007) Nonthermal optical control of magnetism and ultrafast laser-induced spin dynamics in solids. J Phys: Condens Matter 19:043201. https://doi.org/10.1088/0953-8984/19/4/043201

    Article  CAS  Google Scholar 

  3. Takeda H, John S (2008) Compact optical one-way waveguide isolators for photonic-band-gap microchips. Phys Rev A 78:023804. https://doi.org/10.1103/PhysRevA.78.023804

    Article  CAS  Google Scholar 

  4. Bi L, Hu J, Jiang P et al (2011) On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat Photonics 5:758–762. https://doi.org/10.1038/nphoton.2011.270

    Article  CAS  Google Scholar 

  5. Zhang Y, Du Q, Wang C et al (2019) Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6:473–478

    Article  CAS  Google Scholar 

  6. Wang Z, Fan S (2005) Optical circulators in two-dimensional magneto-optical photonic crystals. Opt Lett 30:1989–1991

    Article  Google Scholar 

  7. Śmigaj W, Romero-Vivas J, Gralak B et al (2010) Magneto-optical circulator designed for operation in a uniform external magnetic field. Opt Lett 35:568. https://doi.org/10.1364/OL.35.000568

    Article  PubMed  Google Scholar 

  8. Dmitriev V, Kawakatsu MN, de Souza FJM (2012) Compact three-port optical two-dimensional photonic crystal-based circulator of W-format. Opt Lett 37:3192–3194

    Article  Google Scholar 

  9. Ross WE, Psaltis D, Anderson RH (1983) Two-dimensional magneto-optic spatial light modulator for signal processing. Opt Eng 22:485–490. https://doi.org/10.1016/B978-0-08-100877-5.00017-7

    Article  Google Scholar 

  10. Park J, Inoue M, Cho J et al (2003) An optical micro-magnetic device: magnetic-spatial light modulator. J Magn 8:50–59

    Article  Google Scholar 

  11. Takahashi K, Takagi H, Shin KH et al (2007) Figures of merit of magneto-optic spatial light modulators with magnetophotonic crystals. Phys Stat Sol (C) 4:4536–4539. https://doi.org/10.1002/pssc.200777215

    Article  CAS  Google Scholar 

  12. Hill B, Sander I, Much G (1977) Magneto-optic memories Opt Acta (Lond) 24:495–504. https://doi.org/10.1080/713819553

    Article  Google Scholar 

  13. Shirakashi Z, Goto T, Takagi H et al (2017) Reconstruction of non-error magnetic hologram data by magnetic assist recording. Sci Rep 7:12835. https://doi.org/10.1038/s41598-017-12442-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakamura Y, Lim PB, Goto T et al (2019) Development of heat dissipation multilayer media for volumetric magnetic hologram memory. Appl Sci 9:1738. https://doi.org/10.3390/app9091738

    Article  CAS  Google Scholar 

  15. Lenz JE (1990) A review of magnetic sensors. Proc IEEE 78:973–989

    Article  Google Scholar 

  16. Arakelyan S, Galstyan O, Lee H et al (2016) Direct current imaging using a magneto-optical sensor. Sensors Actuators A 238:397–401. https://doi.org/10.1016/j.sna.2016.01.002

    Article  CAS  Google Scholar 

  17. Zhang G, Zhang Z, Xu Y, Wang J (2018) High speed magneto-optical imaging system to investigate motion characteristics of arc plasma in enclosed chamber. Opt Express 26:23156–23166

    Article  CAS  Google Scholar 

  18. Choi GM, Schleife A, Cahill DG (2017) Optical-helicity-driven magnetization dynamics in metallic ferromagnets. Nat Commun 8:15085. https://doi.org/10.1038/ncomms15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozhaev MA, Chernov AI, Sylgacheva DA et al (2018) Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity. Sci Rep 8:11435. https://doi.org/10.1038/s41598-018-29294-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kharratian S, Urey H, Onbaşlı MC (2020) Advanced materials and device architectures for magnetooptical spatial light modulators. Adv Opt Mater 8:1901381. https://doi.org/10.1002/adom.201901381

    Article  CAS  Google Scholar 

  21. Hui PM, Stroud D (1987) Theory of Faraday rotation by dilute suspensions of small particles. Appl Phys Lett 50:950–952

    Article  CAS  Google Scholar 

  22. Chen Q, Wang H, Wang Q, Pan Y (2018) Plasmon enhanced Faraday rotation in Fe3O4/Ag ferrofluids for magneto optical sensing applications. Plasmonics 13:353–363. https://doi.org/10.1007/s11468-017-0606-1

    Article  CAS  Google Scholar 

  23. Jain PK, Xiao Y, Walsworth R, Cohen AE (2009) Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett 9:1644–1650. https://doi.org/10.1021/nl900007k

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Clavero C, Huba Z et al (2011) Plasmonics and enhanced magneto-optics in core−shell Co−Ag nanoparticles. Nano Lett 11:1237–1240. https://doi.org/10.1021/nl1042243

    Article  CAS  PubMed  Google Scholar 

  25. Sohrabi F, Hamidi SM (2017) Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. Eur Phys J Plus 132:15. https://doi.org/10.1140/epjp/i2017-11294-2

    Article  Google Scholar 

  26. Yu B, Chen H, Liu Q et al (2018) Magneto-optical studies of noble metal-magnetic dielectric systems. Plasmonics 13:31–38. https://doi.org/10.1007/s11468-016-0480-2

    Article  CAS  Google Scholar 

  27. Li D, Tang Z, Chen L et al (2018) Plasmonics resonance enhance magneto-optical effects through metallic sub-wavelength grating with bismuth iron garnet slab. Plasmonics 13:55–62. https://doi.org/10.1007/s11468-016-0483-z

    Article  CAS  Google Scholar 

  28. Steel MJ, Levy M, Osgood RM (2000) High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects. IEEE Photonics Technol Lett 12:1171–1173

    Article  Google Scholar 

  29. Yoshimoto T, Goto T, Isogai R et al (2016) Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle. Opt Express 24:8746–8753. https://doi.org/10.1364/OE.24.008746

    Article  CAS  PubMed  Google Scholar 

  30. Kharratian S, Urey H, Onbaşlı MC (2019) RGB Magnetophotonic crystals for high-contrast magnetooptical spatial light modulators. Sci Rep 9:644. https://doi.org/10.1038/s41598-018-37317-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Da H, Liang G (2011) Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene. Appl Phys Lett 98:261915. https://doi.org/10.1063/1.3605593

    Article  CAS  Google Scholar 

  32. Wan X, Qi MQ, Chen TY, Cui TJ (2016) Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep 6:20663. https://doi.org/10.1038/srep20663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shaltout AM, Shalaev VM, Brongersma ML (2019) Spatiotemporal light control with active metasurfaces. Science 364:eaat3100.https://doi.org/10.1126/science.aat3100

  34. Won R (2017) The rise of plasmonic metasurfaces. Nat Photonics 11:462–464. https://doi.org/10.1038/nphoton.2017.136

    Article  CAS  Google Scholar 

  35. Zhang J, ElKabbash M, Wei R, et al (2019) Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci Appl 8:53.https://doi.org/10.1038/s41377-019-0164-8

  36. De Marcellis A, Palange E, Janneh M et al (2017) Design optimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing. Plasmonics 12:293–298. https://doi.org/10.1007/s11468-016-0263-9

    Article  CAS  Google Scholar 

  37. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912. https://doi.org/10.1021/cr1002672

    Article  CAS  PubMed  Google Scholar 

  38. Chin JY, Steinle T, Wehlus T et al (2013) Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat Commun 4:1599. https://doi.org/10.1038/ncomms2609

    Article  CAS  PubMed  Google Scholar 

  39. Caballero B, García-Martín A, Cuevas JC (2015) Faraday effect in hybrid magneto-plasmonic photonic crystals. Opt Express 23:22238–22249. https://doi.org/10.1364/oe.23.022238

    Article  CAS  PubMed  Google Scholar 

  40. Lei C, Chen L, Tang Z et al (2016) Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays. Opt Lett 41:729–732. https://doi.org/10.1364/ol.41.000729

    Article  PubMed  Google Scholar 

  41. Sadeghi S, Hamidi SM (2018) Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance. J Magn Magn Mater 451:305–310. https://doi.org/10.1016/j.jmmm.2017.11.080

    Article  CAS  Google Scholar 

  42. Rahimzadeh Kalaleh Rodriguez S (2012) Coupling light and matter in metallic nanoparticle arrays. Eindhoven University of Technology

  43. Bhattacharyya S, Ghosh S, Srivastava KV (2017) A wideband cross polarization conversion using metasurface. Radio Sci 52:1395–1404. https://doi.org/10.1002/2017RS006396

    Article  Google Scholar 

  44. Zhu W, Yang R, Fan Y et al (2018) Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 10:12054–12061. https://doi.org/10.1039/c8nr02587h

    Article  CAS  PubMed  Google Scholar 

  45. Khan MI, Khalid Z, Tahir FA (2019) Linear and circular-polarization conversion in X-band using anisotropic metasurface. Sci Rep 9:4552. https://doi.org/10.1038/s41598-019-40793-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan Y, Tu L, Zhang F et al (2018) Broadband terahertz absorption in graphene-embedded photonic crystals. Plasmonics 13:1153–1158. https://doi.org/10.1007/s11468-017-0615-0

    Article  CAS  Google Scholar 

  47. Kalish AN, Komarov RS, Kozhaev MA et al (2018) Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica 5:617–623. https://doi.org/10.1364/optica.5.000617

    Article  Google Scholar 

  48. Pappas SD, Lang P, Eul T, et al (2019) Broadband enhancement of the magneto-optical activity of hybrid Au loaded Bi:YIG. Prepr https//arxiv.org/abs/190511941

  49. Gao H, McMahon JM, Lee MH et al (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17:2334–2340. https://doi.org/10.1364/oe.17.002334

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi H, Iwasa S, Vasa NJ et al (2002) Characteristics of Bi:YIG magneto-optic thin films fabricated by pulsed laser deposition method for an optical current transformer. Jpn J Appl Phys 41:410–411. https://doi.org/10.1143/JJAP.41.410

    Article  CAS  Google Scholar 

  51. Bondarev IV, Shalaev VM (2017) Universal features of the optical properties of ultrathin plasmonic films. Opt Mater Express 7:3731–3740. https://doi.org/10.1364/ome.7.003731

    Article  CAS  Google Scholar 

  52. Kang ESH, Shiran Chaharsoughi M, Rossi S, Jonsson MP (2019) Hybrid plasmonic metasurfaces. J Appl Phys 126:140901. https://doi.org/10.1063/1.5116885

    Article  CAS  Google Scholar 

  53. Bondarev IV, Mousavi H, Shalaev VM (2018) Optical response of finite-thickness ultrathin plasmonic films. MRS Commun 8:1092–1097. https://doi.org/10.1557/mrc.2018.153

    Article  CAS  Google Scholar 

  54. Varnavski O, Ramakrishna G, Kim J et al (2010) Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc 132:16–17

    Article  CAS  Google Scholar 

  55. Manjavacas A, García de Abajo FJ (2014) Tunable plasmons in atomically thin gold nanodisks. Nat Commun 5:3548. https://doi.org/10.1038/ncomms4548

    Article  CAS  PubMed  Google Scholar 

  56. García de Abajo FJ, Manjavacas A (2015) Plasmonics in atomically thin materials. Faraday Discuss 178:87–107. https://doi.org/10.1039/c4fd00216d

    Article  CAS  PubMed  Google Scholar 

  57. Shah D, Reddy H, Kinsey N et al (2017) Optical properties of plasmonic ultrathin TiN films. Adv Opt Mater 5:1700065. https://doi.org/10.1002/adom.201700065

    Article  CAS  Google Scholar 

  58. Maniyara RA, Rodrigo D, Yu R et al (2019) Tunable plasmons in ultrathin metal films. Nat Photonics 13:328–333. https://doi.org/10.1038/s41566-019-0366-x

    Article  CAS  Google Scholar 

  59. Liyanage T, Nagaraju M, Johnson M et al (2020) Reversible tuning of the plasmoelectric effect in noble metal nanostructures through manipulation of organic ligand energy levels. Nano Lett 20:192–200. https://doi.org/10.1021/acs.nanolett.9b03588

    Article  CAS  PubMed  Google Scholar 

  60. Johnson PB, Christy RW (1972) Optical constant of the nobel metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  61. Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando

    Google Scholar 

  62. Belotelov VI, Doskolovich LL, Kotov VA et al (2007) Magnetooptical effects in the metal-dielectric gratings. Opt Commun 278:104–109. https://doi.org/10.1016/j.optcom.2007.05.064

    Article  CAS  Google Scholar 

  63. Belotelov VI, Doskolovich LL, Zvezdin AK (2007) Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys Rev Lett 98:077401. https://doi.org/10.1103/PhysRevLett.98.077401

    Article  CAS  PubMed  Google Scholar 

  64. Dmitriev V, Paixão F, Kawakatsu M (2013) Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect. Opt Lett 38:1052. https://doi.org/10.1364/ol.38.001052

    Article  PubMed  Google Scholar 

  65. Zuev VS, Zueva GY (2009) Photon momentum in a surface plasmon. Opt Spectrosc 106:248–251. https://doi.org/10.1134/S0030400X09020167

    Article  CAS  Google Scholar 

  66. Wiederrecht G (2010) Handbook of nanoscale optics and electronics. First, Amsterdam

    Google Scholar 

  67. Safiabadi Tali SA, Zhou W (2019) Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics 8:1199–1225. https://doi.org/10.1515/nanoph-2019-0088

    Article  CAS  Google Scholar 

  68. Murai S, Verschuuren MA, Lozano G et al (2013) Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides. Opt Express 21:4250–4262. https://doi.org/10.1364/oe.21.004250

    Article  CAS  PubMed  Google Scholar 

  69. Huang S, Xie Z, Chen W et al (2018) Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt Express 26:7066–7078. https://doi.org/10.1364/oe.26.007066

    Article  CAS  PubMed  Google Scholar 

  70. Drezdzon SM, Yoshie T (2009) On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff. Opt Express 17:9276–9281. https://doi.org/10.1364/OE.17.009276

    Article  CAS  PubMed  Google Scholar 

  71. Kang M-G, Dong Quoc V, Surabhi S et al (2019) Spectrometer based real-time magnetic Faraday rotation spectroscopy of Bi-YIG thin films. J Magn Magn Mater 482:61–65. https://doi.org/10.1016/j.jmmm.2019.03.035

    Article  CAS  Google Scholar 

  72. Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd. J Phys Chem 91:634–643. https://doi.org/10.1021/j100287a028

    Article  CAS  Google Scholar 

  73. Bandurin DA, Svintsov D, Gayduchenko I et al (2018) Resonant terahertz detection using graphene plasmons. Nat Commun 9:5392. https://doi.org/10.1038/s41467-018-07848-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mueller JPB, Rubin NA, Devlin RC et al (2017) Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118:113901. https://doi.org/10.1103/PhysRevLett.118.113901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet C. Onbaşlı.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was financially supported by the European Research Council Advanced Grant (ERC-AdG) Wear3D Project No. 340200, TUBITAK Grant No. 119S362, and TÜBA-GEBİP Award by the Turkish Academy of Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharratian, S., Urey, H. & Onbaşlı, M.C. Broadband Enhancement of Faraday Effect Using Magnetoplasmonic Metasurfaces. Plasmonics 16, 521–531 (2021). https://doi.org/10.1007/s11468-020-01304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01304-6

Keywords

Navigation