Skip to main content
Log in

Effect of the Deposition Temperature on Ammonia Gas Sensing Based on SnO2/Porous Silicon

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Enhancing the performance of the room temperature gas sensing that based on a wide surface area of the metal oxide semiconductor is the most important field. In this paper, tin dioxide has been successfully prepared and deposited on the photoelectrochemical etched n-type silicon substrate by spray pyrolysis technique at different deposition temperatures. The constructional, morphological, and topographical properties have been inspected. The XRD patterns showed a broadening peak with a preferential one in the direction (110) having a tiny crystalline size and a huge surface area. The SEM and atomic force microscope displayed semi-spherical microstructures and nanostructures aggregated on the wall of the pores, and the others cover some pores; also, the surface was very rough and has small grains. Sensing characteristics depicted an ultra-response toward ammonia gas at the room temperature with the value of (175%) and quick response and recovery times at the deposition temperature of 350°C. The porous silicon substrate was the ideal way for SnO2 nanoparticles to increase the gas response toward ammonia gas molecules in the humid air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roy SS, Podder J (2010) Synthesis and optical characterization of pure and Cu doped SnO2 thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 12(7):1479

    CAS  Google Scholar 

  2. Turgut G, Keskenler EF, Aydin S, Sonmez E et al (2013) Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlattices Microstruct. 56:107–116

    CAS  Google Scholar 

  3. Yamada T, Uchiyama S, Inaba Y et al (2012) A diffusive sampling device for measurement of ammonia in air. Atmospheric environment 54:629–633

    CAS  Google Scholar 

  4. Al-Enizi AM, Naushad M, Al-Muhtaseb AH et al (2018) Synthesis and characterization of highly selective and sensitive Sn/SnO2/N-doped carbon nanocomposite (Sn/SnO2@ NGC) for sensing toxic NH3 gas. Chem. Eng. J. 345:58–66

    CAS  Google Scholar 

  5. Debataraja A, Zulhendri DW, Yuliarto B et al (2017) Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications. Procedia Eng. 170:60–64

    CAS  Google Scholar 

  6. Shim YS, Moon HG, Jang HW et al (2011) Transparent conducting oxide electrodes for novel metal oxide gas sensors. Sensors and Actuators B: Chemical 160(1):357–363

    CAS  Google Scholar 

  7. Shiraz HG (2017) Efficient room temperature hydrogen gas sensing based on graphene oxide and decorated porous silicon. Int. J. Hydrogen Energy 42(24):15966–15972

    CAS  Google Scholar 

  8. Alwan AM, Jawad MF, and Hashim DA (2019) Enhanced morphological properties of macroporous silicon with the incorporation of Au-Ag bimetallic nanoparticles for improved CO2 gas sensing, Plasmonics, pp. 1–11

  9. Abed HR, Alwan AM, Yousif AA et al (2019) Efficient SnO 2/CuO/porous silicon nanocomposites structure for NH3 gas sensing by incorporating CuO nanoparticles. Opt. Quantum Electron. 51(10):333

    Google Scholar 

  10. Bang JH, Choi MS, Mirzaei A et al (2020) Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46(1):604–611

    CAS  Google Scholar 

  11. Yan W, Hu M, Wang D et al (2015) Room temperature gas sensing properties of porous silicon/V2O5 nanorods composite. Appl. Surf. Sci. 346:216–222

    CAS  Google Scholar 

  12. Alwan AM, Wali LA, Yousif AA (2018) Optimization of AgNPs/mesoPS active substrates for ultra–low molecule detection process. Silicon 10(5):2241–2251

    CAS  Google Scholar 

  13. Brinzari V, Korotcenkov G, Golovanov V (2001) Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin Solid Films 391:167–175

    CAS  Google Scholar 

  14. Korotcenkov G, Brynzari V, Schwank J et al (2001) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor applications. Sens. Actuat. B 77:244–252

    CAS  Google Scholar 

  15. Fan G, Wang Z, Sun K et al (2020) Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics. Journal of Materials Chemistry C 8(33):11610–11617

    CAS  Google Scholar 

  16. Fan G, Wang Z, Sun K et al (2020) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. Journal of Materials Science & Technology 61:125–131

    Google Scholar 

  17. Alwan AM, Yousif AA, Abed HR (2019) High sensitivity and fast response at the room temperature of SnO2: CuO/PSi nanostructures sandwich configuration NH3 gas sensor. AIP Conference Proceedings 2190(1):20086

    Google Scholar 

  18. Keshavarzi S, Mescheder U, Reinecke H (2018) Formation mechanisms of self-organized needles in porous silicon based needle-like surfaces. J. Electrochem. Soc. 165(3):E108–E114

    CAS  Google Scholar 

  19. Alwan AM, Yousif AA, Wali LA (2018) A study on the morphology of the silver nanoparticles deposited on the n-type porous silicon prepared under different illumination types. Plasmonics 13(4):1191–1199

    CAS  Google Scholar 

  20. Thanachayanont C, Yordsri V, Boothroyd C (2011) Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films. Mater. Lett. 65(17–18):2610–2613

    CAS  Google Scholar 

  21. Chacko S, Philip NS, Gopchandran KG et al (2008) Nanostructural and surface morphological evolution of chemically sprayed SnO2 thin films. Appl. Surf. Sci. 254(7):2179–2186

    CAS  Google Scholar 

  22. Alwan AM, Jabbar AA (2011) Design and fabrication of nanostructures silicon photodiode. Mod. Appl. Sci. 5(1):106

    CAS  Google Scholar 

  23. Hashim DA, Alwan AM, and Jawad MF (2018) An investigation of structural properties of monometallic (Ag, Pd) and bimetallic (Ag@ Pd) nanoparticles growth on macro porous silicon, Int. J. Nanoelectron. Matervol. 11, no. 4

  24. Navas I, Vinodkumar R, Pillai VM (2011) Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Applied Physics A 103(2):373

    CAS  Google Scholar 

  25. Patil GE, Kajali DD, Chavan DN et al (2011) Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull. Mater. Sci. 34(1):1–9

    CAS  Google Scholar 

  26. Sankara Subramanian N, Santhi B, Sundareswaran S et al (2006) Studies on spray deposited SnO2, Pd: SnO2 and F: SnO2 thin films for gas sensor applications, Synth. React. Inorganic, Met. Nano-Metal Chem. vol. 36, no. 1, pp. 131–135

  27. Serin T, Serin N, Karadeniz S et al (2006) Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis. J. Non. Cryst. Solids 352(3):209–215

    CAS  Google Scholar 

  28. Baranauskas V, Fontana M, Guo ZJ et al (2005) Field-emission properties of nanocrystalline tin oxide films. Sensors Actuators B Chem. 107(1):474–478

    CAS  Google Scholar 

  29. Ngoc TM, Van Duy N, Hoa ND et al (2019) Effective design and fabrication of low-power-consumption self-heated SnO2 nanowire sensors for reducing gases. Sensors Actuators B Chem. 295:144–152

    CAS  Google Scholar 

  30. Peng R, Li Y, Liu T et al (2019) Reduced graphene oxide/SnO2@ Au heterostructure for enhanced ammonia gas sensing. Chem. Phys. Lett. 737:136829

    CAS  Google Scholar 

  31. Shao F, Hernandez-Ramirez F, Prades JD et al (2012) Assessment and modeling of NH3-SnO2 interactions using individual nanowires. Procedia Engineering 47:293–297

    CAS  Google Scholar 

  32. Han MA, Kim H-J, Lee HC et al (2019) Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481:133–137

    CAS  Google Scholar 

  33. Alwan AM, Hashim DA, Jawad MF (2019) Efficient bimetallic nanoparticles embedded-porous silicon CO gas sensor. Solid. State. Electron. 153:37–45

    CAS  Google Scholar 

  34. Thong LV, Loan LTN, Van Hieu N (2010) Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors Actuators B Chem. 150(1):112–119

    Google Scholar 

  35. Patil LA, Shinde MD, Bari AR et al (2009) Highly sensitive and quickly responding ultrasonically sprayed nanostructured SnO2 thin films for hydrogen gas sensing. Sensors Actuators B Chem. 143(1):270–277

    Google Scholar 

  36. Shahabuddin M, Sharma A, Kumar J et al (2014) Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sensors Actuators B Chem. 194:410–418

    CAS  Google Scholar 

  37. Xu S, Kan K, Yang Y et al (2015) Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloys Compd. 618:240–247

    CAS  Google Scholar 

  38. Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sensors Actuators B Chem. 242:1216–1226

    CAS  Google Scholar 

  39. Shukla S, Seal S (2004) Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide. J. Nanosci. Nanotechnol. 4(1–2):141–145

    CAS  PubMed  Google Scholar 

  40. Levinson J, Shepherd FR, Scanlon PJ et al (1982) Conductivity behavior in polycrystalline semiconductor thin film transistors. J. Appl. Phys. 53(2):1193–1202

    CAS  Google Scholar 

  41. Naama S, Hadjersi T, Keffous A et al (2015) CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater. Sci. Semicond. Process. 38:367–372

    CAS  Google Scholar 

  42. Zouadi N, Messaci S, Sam S et al (2015) CO2 detection with CNx thin films deposited on porous silicon. Mater. Sci. Semicond. Process. 29:367–371

    CAS  Google Scholar 

  43. Katoch A, Gun-Joo Sun, Sun-Woo Choi et al (2014) Acceptor-compensated charge transport and surface chemical reactions in Au-implanted SnO2 nanowires. Sci. Rep. 4:4622

    PubMed  PubMed Central  Google Scholar 

  44. Van Toan N, Hung CM, Van Duy N et al (2017) Bilayer SnO2-WO3 nanofilms for enhanced NH3 gas sensing performance. Mater. Sci. Eng. B 224:163–170

    Google Scholar 

  45. Jin WX, Ma SY, Sun AM et al (2015) Synthesis of hierarchical SnO2 nanoflowers and their high gas-sensing properties. Materials Letters 143:283–286

    CAS  Google Scholar 

  46. Jordi Samà, Sven Barth (2016) Guillem Dom`enech-Gil, Joan-Daniel, Prades N´uria, L´opez Olga, Casals Isabel, Gr`acia Carles, Can´e Albert, and Romano-Rodr´ıguez, Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sensors and Actuators B: Chemical 232:402–409

    Google Scholar 

  47. Abdelghani R, Shokry Hassan H et al (2019) Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique. Sensors and Actuators B: Chemical 297:126668

    CAS  Google Scholar 

  48. Beniwal Ajay, Srivastava Vibhu, Sharma Sunny (2019) Sol-gel assisted nano-structured SnO2 sensor for low concentration ammonia detection at room temperature. Materials Research Express 6:046421

    Google Scholar 

  49. Matteo Tonezzer (2019) Selective gas sensor based on one single SnO2 nanowire. Sensors and Actuators B: Chemical 288:53–59

    Google Scholar 

  50. Kumari Prasanna K, Thomas Boben, Deepa S et al (2018) Impact of surfactants on electrical conduction and preferred orientation of spray-pyrolysed nanostructured SnO2 thin films for LPG and ammonia sensing. Journal of Materials Science: Materials in Electronics 29(15):13087–13102

    Google Scholar 

  51. Pakhare KS, Sagar BM, Potdar SS et al (2019) Facile synthesis of nano-diced SnO2–ZnO composite by chemical route for gas sensor application. Journal of Electronic Materials 48(10):6269–6279

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Technology, Baghdad-Iraq; Mustansiriyah University, Baghdad-Iraq; and University of Tehran, Tehran-Iran, for their support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husam R. Abed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan, A.M., Abed, H.R. & Yousif, A.A. Effect of the Deposition Temperature on Ammonia Gas Sensing Based on SnO2/Porous Silicon. Plasmonics 16, 501–509 (2021). https://doi.org/10.1007/s11468-020-01300-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01300-w

Keywords

Navigation