Skip to main content
Log in

A Newfangled Terahertz Absorber Tuned Temper by Temperature Field Doped by the Liquid Metal

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, a terahertz absorber tuned by temperature field with a newfangled structure is presented, which comprises the mercury resonators. In this scheme, temperature (T) build-up will lead the mercury stored in the bottom slot to expand through the columniform hole and be full of the upper central cross container, which can transform the absorption bands of such an absorber. The simulated results manifest that when T is increased from 0 to 25 °C, the dual-frequency absorption points (2.59 THz, 3.03 THz) and a narrow absorption region over 90% (6.54–7.10 THz), whose relative bandwidth (RB) is 7.9%, will be tailored to a single-frequency point absorption (3.12 THz) and a broadband absorption area (6.00–7.21 THz, and RB = 18.3%). For figuring out the property of the absorber mentioned above, the impacts of incident and polarization angles along with some relevant parameters of the structure on the absorption property are investigated. In addition, for plainly expounding the physical mechanism of absorption, the distributions of the surface current diagrams of the presented absorber are calculated, as well as the electric field diagrams, the magnetic field diagrams, the power loss density diagrams, and the power flow density diagrams. The proffered scheme in this article may offer a novel idea for realizing the reconfigurable absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Melik R, Unal E, Perkgoz NK, Puttlitz C, Demir HV (2009) Metamaterial-based wireless strain sensors. Appl Phys Lett 95:011106

    Article  Google Scholar 

  2. Schueler M, Mandel C, Puentes M, Jakoby R (2012) Metamaterial inspired microwave sensors. IEEE Microw Mag 13:57–68

    Article  Google Scholar 

  3. Caloz C, Itoh T, Rennings A (2008) CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag Mag 50:0–39

    Article  Google Scholar 

  4. Antoniades MA, Eleftheriades GV (2008) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wirel Propag 7:425–428

    Article  Google Scholar 

  5. Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54:2113–2130

    Article  Google Scholar 

  6. Cong L, Cao W, Zhang X, Tian Z, Gu J, Singh R, Han J, Zhang W (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103:171107

    Article  Google Scholar 

  7. Fernandez Fernandez O, Gomez Gomez A, Basterrechea Verdeja J, Vegas Garcia A (2017) Reciprocal circular polarization converter chiral metamaterial in X-band. IEEE Antennas Wirel Propag 1

  8. Zhu J, Yang Y, Li S (2018) A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter. Opt Commun 413:336–340

    Article  CAS  Google Scholar 

  9. Markovich DL, Andryieuski A, Zalkovskij M et al (2013) Metamaterial polarization converter analysis: limits of performance. Appl Phys B 112:143–152

    Article  CAS  Google Scholar 

  10. Ma X, Xiao Z, Liu D (2016) Dual-band cross polarization converter in bi-layered complementary chiral metamaterial. J Mod Opt 63:937–940

    Article  Google Scholar 

  11. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  12. Tharwat M, Mahros AM (2016) Enhanced plasmonic absorber based on a hexagonal annular nano-array and impact of imperfection

  13. Ling X, Xiao Z, Zheng X (2017) An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region. Opt Quant Electron 7:49

    Google Scholar 

  14. Andryieuski SM, Kuznetsova SV, Zhukovsky YS, Kivshar AV (2015) Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci Rep 5:13535

    Article  CAS  Google Scholar 

  15. Dang JH, Gough RC, Morishita AM, Ohta AT, Shiroma WA (2015) Liquid-metal-based reconfigurable components for RF front ends. IEEE Potentials 34:24–30

    Article  Google Scholar 

  16. Jianwen X, Sakib Q, Fajun X et al (2019) Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free, IEEE Antennas Wirel Propag 1

  17. Weiren Z, Ivan R, Fajun X et al (2017) Multiband coherent perfect absorption in a water-based metasurface. Opt Express

  18. Wu PC, Zhu W, Shen ZX, Chong PHJ, Ser W, Tsai DP et al (2017) Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface (Advanced Optical Materials 7/2017). Adv Opt Mater 5:7

    Google Scholar 

  19. Saptarshi G, Sungjoon L (2018) Fluidically switchable metasurface for wide spectrum absorption. Sci Rep-Uk 8:10169

    Article  Google Scholar 

  20. Song QH, Zhu WM, Wu PC, Zhang W, Wu QYS, Teng JH, Shen ZX, Chong PHJ, Liang QX, Yang ZC, Tsai DP, Bourouina T, Leprince-Wang Y, Liu AQ (2017) Liquid-metal-based metasurface for terahertz absorption material: frequency-agile and wide-angle. Appl Mater 5:066103

    Article  Google Scholar 

  21. Zhang HF, Wang ZL, Hu CX, Liu HB (2020) A tailored broadband terahertz metamaterial absorber based on the thermal expansion feature of liquid metal. Results Phys 16:102937

    Article  Google Scholar 

  22. Zhao Z, Zheng T et al (2018) Active-thermal-tunable terahertz absorber with temperature-sensitive material thin film. Nanotechnol Precis Eng 1:19–24

    Google Scholar 

  23. Luu DH, Van Dung N, Hai P, Giang TT, Lam VD (2016) Switchable and tunable metamaterial absorber in THz frequencies. J Sci Adv Mater Devices 1:65–68

    Article  Google Scholar 

  24. Gaddam PR, Huxtable ST, Ducker WA (2016) A liquid-state thermal diode. Int J Heat Mass Transf 106:741–744

    Article  Google Scholar 

  25. Sun D, Yin J, Liu Y, Liu X (2016) The electrical and thermal properties of polyimide/boron nitride nanocomposite films. J Polym Res 23:254

    Article  Google Scholar 

  26. Du LH, Li J, Zhai ZH, Meng K, Liu Q, Zhong SC, Zhou PW, Zhu LG, Li ZR, Peng QX (2016) A high-performance broadband terahertz absorber based on sawtooth-shape doped-silicon. AIP Adv 6:055112

    Article  Google Scholar 

Download references

Funding

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927), and sponsored by NUPTSF (Grant No. NY217131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZL., Hu, CX., Liu, HB. et al. A Newfangled Terahertz Absorber Tuned Temper by Temperature Field Doped by the Liquid Metal. Plasmonics 16, 425–434 (2021). https://doi.org/10.1007/s11468-020-01296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01296-3

Keywords

Navigation