Ultra-broadband Near-Unity Light Absorption by Disjunct Scattering Resonances of Disordered Nanounits Created with Atomic Scale Shadowing Effect


Metamaterial perfect absorbers have been the subject of many studies in recent years. Near-unity light harvesting in an ultra-broadband frequency range is the prime goal in many applications such as photoconversion systems. While the most common designs for achieving this goal are periodic plasmonic architectures, this work reveals the unprecedented potential of random designs for ultra-broadband light absorption. A metal-insulator-metal (MIM) structure with a periodically patterned top layer has discrete translational symmetry. The proposed theory, supported by numerical simulations, unveils the fact that breaking this symmetry in the top layer introduces multiple resonant units with separate spectra, and the superposition of these separate resonances broaden the overall response. The random absorber is realized using the oblique angle deposition-induced atomic scale shadowing effect. Based on the experimental results and numerical calculations, the proposed disorder plasmonic design can propose unity absorption (> 90%) over the spectral range from 520 to 1270 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig 3


  1. 1.

    Ji C, Lee KT, Xu T, Zhou J, Park HJ, Guo LJ (2017) Engineering Light at the Nanoscale: structural color filters and broadband perfect absorbers. Adv Opt Mater 5:1–22. https://doi.org/10.1002/adom.201700368

    CAS  Article  Google Scholar 

  2. 2.

    Ghobadi A, Hajian H, Butun B, Ozbay E (2018) Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photonics 5:4203–4221. https://doi.org/10.1021/acsphotonics.8b00872

    CAS  Article  Google Scholar 

  3. 3.

    Hajian H, Ghobadi A, Butun B, Ozbay E (2019) Active metamaterial nearly perfect light absorbers: a review [Invited]. J Opt Soc Am B 36:F131. https://doi.org/10.1364/josab.36.00f131

    CAS  Article  Google Scholar 

  4. 4.

    Ghobadi A, Ulusoy Ghobadi TG, Karadas F, Ozbay E (2019) Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications. Adv Opt Mater 7:1900028. https://doi.org/10.1002/adom.201900028

    CAS  Article  Google Scholar 

  5. 5.

    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(80):189–194. https://doi.org/10.1126/science.1114849

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Li Z, Butun S, Aydin K (2015) Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2:183–188. https://doi.org/10.1021/ph500410u

    CAS  Article  Google Scholar 

  7. 7.

    Ozbay I, Ghobadi A, Butun B, Turhan-Sayan G (2020) Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries. Opt Lett 45:686. https://doi.org/10.1364/ol.45.000686

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Li Z, Palacios E, Butun S, Kocer H, Aydin K (2015) Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci Rep 5:1–22. https://doi.org/10.1038/srep15137

    CAS  Article  Google Scholar 

  9. 9.

    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI (2016) Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 6:39445. https://doi.org/10.1038/srep39445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Battaglia C, Hsu CM, Söderström K, Escarré J, Haug FJ, Charrière M, Boccard M, Despeisse M, Alexander DTL, Cantoni M, Cui Y, Ballif C (2012) Light trapping in solar cells: can periodic beat random? ACS Nano 6:2790–2797. https://doi.org/10.1021/nn300287j

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dewan R, Shrestha S, Jovanov V, Hüpkes J, Bittkau K, Knipp D (2015) Random versus periodic: determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures. Sol Energy Mater Sol Cells 143:183–189. https://doi.org/10.1016/j.solmat.2015.06.014

    CAS  Article  Google Scholar 

  12. 12.

    Pratesi F, Burresi M, Riboli F, Vynck K, Wiersma DS (2013) Disordered photonic structures for light harvesting in solar cells. Opt Express 21:A460. https://doi.org/10.1364/oe.21.00a460

    Article  PubMed  Google Scholar 

  13. 13.

    Pala RA, Liu JSQ, Barnard ES, Askarov D, Garnett EC, Fan S, Brongersma ML (2013) Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3095

    CAS  Article  Google Scholar 

  14. 14.

    Lee K-T, Jang J-Y, Park SJ, Ji C, Guo LJ, Park HJ (2016) Subwavelength nanocavity for flexible structural transmissive color generation with a wide viewing angle. Optica 3:1489–1495. https://doi.org/10.1364/OPTICA.3.001489

    CAS  Article  Google Scholar 

  15. 15.

    Li Z, Butun S, Aydin K (2016) Lithography-free transmission fi lters at ultraviolet frequencies using ultra-thin aluminum films. J Opt 18:065006. https://doi.org/10.1088/2040-8978/18/6/065006

    CAS  Article  Google Scholar 

  16. 16.

    Zhao Y, Zhao Y, Hu S, Lv J, Ying Y, Gervinskas G, Si G (2017) Artificial structural color pixels: a review. Materials (Basel) 10:944. https://doi.org/10.3390/ma10080944

    CAS  Article  Google Scholar 

  17. 17.

    Yoon Y-T, Lee S-S (2010) Transmission type color filter incorporating a silver film based etalon. Opt Express 18:5344–5349. https://doi.org/10.1364/OE.18.005344

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zhao D, Meng L, Gong H, Chen X, Chen Y, Yan M, Li Q, Qiu M (2014) Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl Phys Lett 104:221107. https://doi.org/10.1063/1.4881267

    CAS  Article  Google Scholar 

  19. 19.

    Lee JY, Lee KT, Seo S, Guo LJ (2014) Decorative power generating panels creating angle insensitive transmissive colors. Sci Rep 4:4192. https://doi.org/10.1038/srep04192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mirshafieyan SS, Gregory DA (2018) Electrically tunable perfect light absorbers as color filters and modulators. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-20879-z

    CAS  Article  Google Scholar 

  21. 21.

    Eng HAOP, Uo YIL, Ing XIY et al (2016) Broadband and highly absorbing multilayer structure in mid-infrared. Appl Opt 55:8833–8838

    Article  Google Scholar 

  22. 22.

    Ghobadi A, Dereshgi SA, Butun B, Ozbay E (2017) Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator. Sci Rep 7:14538. https://doi.org/10.1038/s41598-017-15248-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Mattiucci N, Bloemer MJ, Akozbek N, D’Aguanno G (2013) Impedance matched thin metamaterials make metals absorbing. Sci Rep 3:1–11. https://doi.org/10.1038/srep03203

    Article  Google Scholar 

  24. 24.

    Chirumamilla M, Roberts AS, Ding F, Wang D, Kristensen PK, Bozhevolnyi SI, Pedersen K (2016) Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt Mater Express 6:2704. https://doi.org/10.1364/OME.6.002704

    CAS  Article  Google Scholar 

  25. 25.

    Deng H, Li Z, Stan L, Rosenmann D, Czaplewski D, Gao J, Yang X (2015) Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt Lett 40:2592–2595

    CAS  Article  Google Scholar 

  26. 26.

    Kajtár G, Kafesaki M, Economou EN, Soukoulis CM (2016) Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum. J Phys D Appl Phys 49:055104. https://doi.org/10.1088/0022-3727/49/5/055104

    CAS  Article  Google Scholar 

  27. 27.

    Ding F, Mo L, Zhu J, He S (2015) Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Appl Phys Lett 106:061108. https://doi.org/10.1063/1.4908182

    CAS  Article  Google Scholar 

  28. 28.

    Zhong YK, Lai Y-C, Tu M-H, Chen BR, Fu SM, Yu P, Lin A (2016) Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. Opt Express 24:A832. https://doi.org/10.1364/OE.24.00A832

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zhong YK, Tu M, Chen B et al (2016) Fully planarized perfect metamaterial absorbers with no photonic nanostructures. IEEE Photonics J 8:2200109–2200109. https://doi.org/10.1109/JPHOT.2015.2507368

    CAS  Article  Google Scholar 

  30. 30.

    Fu SM, Zhong YK, Tu MH, Chen BR, Lin A (2016) A fully functionalized metamaterial perfect absorber with simple design and implementation. Sci Rep 6:36244. https://doi.org/10.1038/srep36244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ghobadi A, Dereshgi SA, Hajian H, Bozok B, Butun B, Ozbay E (2017) Ultra-broadband , wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture. Sci Rep 7:4755. https://doi.org/10.1038/s41598-017-04964-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ghobadi A, Hajian H, Dereshgi SA, Bozok B, Butun B, Ozbay E (2017) Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-15312-w

    CAS  Article  Google Scholar 

  33. 33.

    Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E (2019) Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics 8:823–832. https://doi.org/10.1515/nanoph-2018-0217

    CAS  Article  Google Scholar 

  34. 34.

    Soydan MC, Ghobadi A, Yildirim DU, Erturk VB, Ozbay E (2019) All ceramic-based metal-free ultra-broadband perfect absorber. Plasmonics 1:1–15. https://doi.org/10.1007/s11468-019-00976-z

    CAS  Article  Google Scholar 

  35. 35.

    Mao K, Shen W, Yang C, Fang X, Yuan W, Zhang Y, Liu X (2016) Angle insensitive color filters in transmission covering the visible region. Sci Rep 6:19289. https://doi.org/10.1038/srep19289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Park CS, Shrestha VR, Lee SS, Kim ES, Choi DY (2015) Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2 -Ag integrated with a phase compensating dielectric overlay. Sci Rep 5:8467. https://doi.org/10.1038/srep08467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lee K-T, Seo S, Lee JY, Guo LJ (2014) Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters. Adv Mater 26:6324–6328. https://doi.org/10.1002/adma.201402117

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Han JH, Kim D-Y, Kim D, Choi KC (2016) Highly conductive and flexible color filter electrode using multilayer film structure. Sci Rep 6:29341. https://doi.org/10.1038/srep29341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lee KT, Seo S, Yong Lee J, Jay Guo L (2014) Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters. Appl Phys Lett 104:231112. https://doi.org/10.1063/1.4883494

    CAS  Article  Google Scholar 

  40. 40.

    Yang C, Shen W, Zhang Y, Li K, Fang X, Zhang X, Liu X (2015) Compact multilayer film structure for angle insensitive color filtering. Sci Rep 5:9285. https://doi.org/10.1038/srep09285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lee KT, Han SY, Park HJ (2017) Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances. Adv Opt Mater 5:1700284. https://doi.org/10.1002/adom.201700284

    CAS  Article  Google Scholar 

  42. 42.

    Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E (2019) Lithography-free planar band-pass reflective color filter using series connection of cavities. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-018-36540-8

    CAS  Article  Google Scholar 

  43. 43.

    Abedini Dereshgi S, Ghobadi A, Hajian H, Butun B, Ozbay E (2017) Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks. Sci Rep 7:14872. https://doi.org/10.1038/s41598-017-13837-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hajian H, Ghobadi A, Butun B, Ozbay E (2017) Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals. Opt Express 25:31970–31987. https://doi.org/10.1364/OE.25.031970

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ghobadi A, Demirag Y, Hajian H, Toprak A, Butun B, Ozbay E (2019) Spectrally selective ultrathin photodetectors using strong interference in nanocavity design. IEEE Electron Device Lett 40:1–928. https://doi.org/10.1109/led.2019.2910064

    CAS  Article  Google Scholar 

  46. 46.

    Ghobadi A, Hajian H, Rashed AR, Butun B, Ozbay E (2018) Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Res 6:168–176. https://doi.org/10.1364/PRJ.6.000168

    CAS  Article  Google Scholar 

  47. 47.

    Garrelie F, Colombier J-P, Pigeon F, Tonchev S, Faure N, Bounhalli M, Reynaud S, Parriaux O (2011) Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt Express 19:9035. https://doi.org/10.1364/oe.19.009035

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Han W, Jiang L, Li X, Wang Q, Wang S, Hu J, Lu Y (2017) Controllable plasmonic nanostructures induced by dual-wavelength femtosecond laser irradiation. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-16374-6

    CAS  Article  Google Scholar 

  49. 49.

    Tseng ML, Chang CM, Chen BH, Huang YW, Chu CH, Chung KS, Liu YJ, Tsai HG, Chu NN, Huang DW, Chiang HP, Tsai DP (2012) Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique. Nanotechnology 23. https://doi.org/10.1088/0957-4484/23/44/444013

  50. 50.

    Li C, Hu J, Jiang L, Xu C, Li X, Gao Y, Qu L (2020) Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. Nanophotonics 9:691–702. https://doi.org/10.1515/nanoph-2019-0460

    CAS  Article  Google Scholar 

  51. 51.

    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968. https://doi.org/10.1021/acsami.5b00056

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Grüner C, Liedtke S, Bauer J, Mayr SG, Rauschenbach B (2018) Morphology of thin films formed by oblique physical vapor deposition. ACS Appl Nano Mater 1:1370–1376. https://doi.org/10.1021/acsanm.8b00124

    CAS  Article  Google Scholar 

  53. 53.

    Soydan MC, Ghobadi A, Yildirim DU et al (2019) Lithography-free random bismuth nanostructures for full solar spectrum harvesting and mid-infrared sensing. Adv Opt Mater n/a:1901203. https://doi.org/10.1002/adom.201901203

    CAS  Article  Google Scholar 

  54. 54.

    Ghobadi TGU, Ghobadi A, Soydan MC, Vishlaghi MB, Kaya S, Karadas F, Ozbay E (2020) Strong light–matter interactions in Au plasmonic nanoantennas coupled with prussian blue catalyst on BiVO4 for photoelectrochemical water splitting. ChemSusChem 13:2577–2588. https://doi.org/10.1002/cssc.202000294

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ulusoy Ghobadi TG, Ghobadi A, Karadas F, Ozbay E (2020) Large scale compatible fabrication of gold capped titanium dioxide nanoantennas using a shadowing effect for photoelectrochemical water splitting. Int J Hydrog Energy 45:1521–1531. https://doi.org/10.1016/j.ijhydene.2019.11.060

    CAS  Article  Google Scholar 

  56. 56.

    Yildirim DU, Ghobadi A, Soydan MC, Atesal O, Toprak A, Caliskan MD, Ozbay E (2019) Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface. ACS Photonics 6:1812–1822. https://doi.org/10.1021/acsphotonics.9b00636

    CAS  Article  Google Scholar 

  57. 57.

    Soydan MC, Ghobadi A, Yildirim DU, Erturk VB, Ozbay E (2020) Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal-tunable metamaterial. Phys Status Solidi Rapid Res Lett 2000066:1–6. https://doi.org/10.1002/pssr.202000066

    CAS  Article  Google Scholar 

  58. 58.

    Stuart HR, Hall DG (1998) Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett 80:5663–5666. https://doi.org/10.1002/pola.23473

    CAS  Article  Google Scholar 

  59. 59.

    Cesario J, Quidant R, Badenes G, Enoch S (2005) Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 30:3404. https://doi.org/10.1364/ol.30.003404

    Article  PubMed  Google Scholar 

  60. 60.

    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244. https://doi.org/10.1364/ol.34.000244

    CAS  Article  PubMed  Google Scholar 

Download references


Authors acknowledge financial support from DPT-HAMIT and TUBITAK projects under Nos. 113E331 and 109E301. One of the authors (E. O.) also acknowledges partial support from the Turkish Academy of Sciences.

Author information



Corresponding authors

Correspondence to Imre Ozbay or Ekmel Ozbay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozbay, I., Ghobadi, A. & Ozbay, E. Ultra-broadband Near-Unity Light Absorption by Disjunct Scattering Resonances of Disordered Nanounits Created with Atomic Scale Shadowing Effect. Plasmonics 16, 83–90 (2021). https://doi.org/10.1007/s11468-020-01260-1

Download citation


  • Plasmonics
  • Fabry-Perot cavity
  • Metamaterial perfect absorber
  • Oblique angle deposition