Abstract
In this research, by using the theory of the surface plasmon polaritons and the plasmonic hybrid components, a new symmetric three-core hybrid plasmonic splitter is proposed at the communication wavelength range. The design consists of two silicon external waveguides with the same dimensions and features, and a centered hybrid waveguide. The centered hybrid waveguide simulated with two silver metal layers and a core silicon waveguide. The plasmonic hybrid coupler supports three supermodes and directly couples the transverse magnetic (TM) mode to the second external waveguide. In contrast, the transverse electric (TE) mode passes through the first external waveguide without coupling. The essential features of the proposed design were studied thoroughly. The most significant parameters of the structure, including propagated modes in the waveguides, extinction ratio (ER), insertion loss (IL), and power transfers, were evaluated using the finite-difference eigenmode (FDE) and eigenmode expansion (EME) methods. The results show that the ERs for the external waveguides are greater than 38 dB for the first external waveguide and 40 dB for the second external waveguide. The ILs of the TE and TM modes are less than 0.1 dB and 0.5 dB at the 1550 nm telecommunication wavelength, respectively.
This is a preview of subscription content, access via your institution.










References
Alam M, Meier J, Aitchison J, Mojahedi M Super mode propagation in low index medium. In: Quantum Electronics and Laser Science Conference, 2007. Optical Society of America, p JThD112
Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8(3):394–408. https://doi.org/10.1002/lpor.201300168
Sun B, Chen M-Y, Zhang Y-K, Zhou J (2013) An ultracompact hybrid plasmonic waveguide polarization beam splitter. Appl Phys B Lasers Opt 113(2):179–183. https://doi.org/10.1007/s00340-013-5453-y
Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83. https://doi.org/10.1038/nphoton.2010.282
Chee J, Zhu S, Lo G (2012) CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt Express 20(23):25345–25355. https://doi.org/10.1364/OE.20.025345
Zhu H, Hao R, Li E (2018) Ridge waveguide assisted highly efficient transverse-electric-pass polarizer based on a hybrid plasmonic waveguide. Appl Opt 57(19):5533–5537. https://doi.org/10.1364/AO.57.005533
Chang K-W, Huang C-C (2016) Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide. Sci Rep 6:19609. https://doi.org/10.1038/srep19609
Gao L, Huo Y, Harris JS, Zhou Z (2013) Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photon Technol Lett 25(21):2081–2084. https://doi.org/10.1109/LPT.2013.2281425
Ni B, Xiao J (2018) Ultracompact and broadband silicon-based TE-pass 1× 2 power splitter using subwavelength grating couplers and hybrid plasmonic gratings. Opt Express 26(26):33942–33955. https://doi.org/10.1364/OE.26.033942
Dai D, Bauters J, Bowers JE (2012) Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Sci Appl 1(3):e1–e1. https://doi.org/10.1038/lsa.2012.1
Xiao J, Guo Z (2018) Ultracompact polarization-insensitive power splitter using subwavelength gratings. IEEE Photon Technol Lett 30(6):529–532. https://doi.org/10.1109/LPT.2018.2801337
Yuan W, Kojima K, Wang B, Koike-Akino T, Parsons K, Nishikawa S, Yagyu E (2012) Mode-evolution-based polarization rotator-splitter design via simple fabrication process. Opt Express 20(9):10163–10169. https://doi.org/10.1364/OE.20.010163
Su Z, Timurdogan E, Hosseini ES, Sun J, Leake G, Coolbaugh DD, Watts MR (2014) Four-port integrated polarizing beam splitter. Opt Lett 39(4):965–968. https://doi.org/10.1364/OL.39.000965
D’Mello Y, Skoric J, Elfiky E, Hui M, Patel D, Wang Y (2017), Plant D numerical analysis and optimization of a multi-mode interference based polarization beam splitter. In: COMSOL conference Boston
Nikoufard M, Alamouti MK, Pourgholi S (2017) Multimode interference power-splitter using InP-based deeply etched hybrid plasmonic waveguide. IEEE Trans Nanotechnol 16(3):477–483. https://doi.org/10.1109/TNANO.2017.2688397
Dai D, Bowers JE (2011) Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express 19(19):18614–18620. https://doi.org/10.1364/OE.19.018614
Ghosh S, Rahman B (2019) Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution. Sensors Actuators B Chem 279:490–502. https://doi.org/10.1016/j.snb.2018.09.070
Wang J, Pei L, Weng S, Wu L, Huang L, Ning T, Li J (2017) A tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber. IEEE Photon J 9(1):1–10. https://doi.org/10.1109/JPHOT.2017.2656248
Younis B, Heikal A, Hameed MFO, Obayya S (2018) Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter. JOSA B 35(5):1020–1029. https://doi.org/10.1364/JOSAB.35.001020
Danaie M, Nasiri Far R, Dideban A (2018) Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes. Int J Optics Photonics 12(1):33–42
Xie Y, Chen Z, Yan J, Wu Y, Huang T, Cheng Z (2020) Combination of surface plasmon polaritons and subwavelength grating for polarization beam splitting. Plasmonics 15(1):235–241. https://doi.org/10.1007/s11468-019-01032-6
He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R (2017) silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: 2017 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, pp 1–3
Wu G, Huang Y, Duan X, Liu K, Ma X, Liu T, Wang H, Ren X (2020) Design and fabrication of 1× N polarization-insensitive beam splitters based on 2D subwavelength gratings. Opt Commun 456:124458. https://doi.org/10.1016/j.optcom.2019.124458
Bai B, Deng Q, Zhou Z (2017) Plasmonic-assisted polarization beam splitter based on bent directional coupling. IEEE Photon Technol Lett 29(7):599–602. https://doi.org/10.1109/LPT.2017.2675448
Ong JR, Ang TY, Sahin E, Pawlina B, Chen G, Tan D, Lim ST, Png CE (2017) Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler. Opt Lett 42(21):4450–4453. https://doi.org/10.1364/OL.42.004450
Ye C, Dai D (2020) Ultra-compact broadband 2× 2 3 dB power splitter using a subwavelength-grating-assisted asymmetric directional coupler. J Lightwave Technol 38(8):2370–2375. https://doi.org/10.1109/JLT.2020.2973663
Kim Y, Lee MH, Kim Y, Kim KH (2018) High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide. Opt Lett 43(14):3241–3244. https://doi.org/10.1364/OL.43.003241
Donnelly J (1986) Limitations on power-transfer efficiency in three-guide optical couplers. IEEE J Quantum Electron 22(5):610–616. https://doi.org/10.1109/JQE.1986.1073010
Ye C, Liu K, Soref RA, Sorger VJ (2015) A compact plasmonic MOS-based 2× 2 electro-optic switch. Nanophotonics 4(3):261–268. https://doi.org/10.1515/nanoph-2015-0010
Kim DW, Lee MH, Kim Y, Kim KH (2015) Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Opt Express 23(2):998–1004. https://doi.org/10.1364/OE.23.000998
Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D (2011) Sub-μm 2 power splitters by using silicon hybrid plasmonic waveguides. Opt Express 19(2):838–847. https://doi.org/10.1364/OE.19.000838
Bozhevolnyi SI, Jung J (2008) Scaling for gap plasmon based waveguides. Opt Express 16(4):2676–2684. https://doi.org/10.1364/OE.16.002676
Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131
Gosciniak J, Holmgaard T, Bozhevolnyi SI (2011) Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J Lightwave Technol 29(10):1473–1481. https://doi.org/10.1109/JLT.2011.2134071
Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370
Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38(16):3005–3008. https://doi.org/10.1364/OL.38.003005
Xu Y, Xiao J, Sun X (2015) Proposal for compact polarization splitter using asymmetrical three-guide directional coupler. IEEE Photon Technol Lett 27(6):654–657. https://doi.org/10.1109/LPT.2015.2389815
Zhang T, Yin X, Chen L, Li X (2016) Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler. Opt Lett 41(2):356–359. https://doi.org/10.1364/OL.41.000356
Hsu C-W, Chang T-K, Chen J-Y, Cheng Y-C (2016) 8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt 55(12):3313–3318. https://doi.org/10.1364/AO.55.003313
Ni B, Xiao J (2017) Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler. IEEE J Quantum Electron 53(4):1–8. https://doi.org/10.1109/JQE.2017.2721539
Huang T, Xie Y, Wu Y, Cheng Z, Zeng S, Ping PS (2019) Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler. Appl Opt 58(9):2264–2268. https://doi.org/10.1364/AO.58.002264
Manfrinato VR, Camino FE, Stein A, Zhang L, Lu M, Stach EA, Black CT (2019) Patterning Si at the 1 nm length scale with aberration-corrected electron-beam lithography: tuning of plasmonic properties by design. Adv Funct Mater 29(52):1903429. https://doi.org/10.1002/adfm.201903429
Park J, Kim J, Kwon H (2020) Evaluation of lateral resolution for confocal Raman microscopy using gold nano-lines made by electron beam lithography. Bull Kor Chem Soc 41(1):34–37. https://doi.org/10.1002/bkcs.11914
Availability of Data and Material
All the results are clearly mentioned in the article.
Code Availability
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shirafkan Dizaj, L., Abbasian, K. & Nurmohammadi, T. A Three-Core Hybrid Plasmonic Polarization Splitter Designing Based on the Hybrid Plasmonic Waveguide for Utilizing in Optical Integrated Circuits. Plasmonics 15, 2213–2221 (2020). https://doi.org/10.1007/s11468-020-01249-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11468-020-01249-w
Keywords
- Finite difference eigenmode (FDE)
- Eigenmode expansion (EME)
- Surface plasmon polaritons
- Hybrid plasmonic waveguides