Enhancing the Sensitivity of a Surface Plasmon Resonance Sensor with Glancing Angle Deposited Nanostructures


In this paper, we demonstrate that the glancing angle deposition (GLAD) technique is a competitive and efficient method to fabricating a nanostructured surface that enhances the sensitivity of surface plasmon resonance (SPR) sensors, because of its simplicity and unique characteristics of material selection. The theoretical investigations were conducted by employing a rigorous coupled-wave analysis for design metrics, i.e., shift in resonance angle, SPR curve angular width, and minimum reflectance at resonance. An optimized geometry was achieved with enhanced characteristics of the SPR sensor. The SPR features of hybrid GLAD nanostructures deposited onto metallic thin films were investigated. An optical setup that used the Kretschmann-Reather configuration was utilized to monitor changes in the refractive index of water solution using the optical power interrogation method. The experimental results demonstrate that the SPR sensor fabricated with hybrid GLAD nanostructures of 30 nm height and ~ 12 nm inter-structural gap size achieved the sensitivity ~ 4× higher that of a than conventional SPR sensor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.



glancing angle deposition


surface plasmon resonance


refractive index


localized surface plasmon resonance


e-beam lithography


rapid thermal annealing


metal-enhanced fluorescence


surface-enhanced Raman spectroscopy


curve angular width


minimum reflectance at resonance


rigorous coupled wavelength analysis


scanning electron microscopy


atomic force microscopy


  1. 1.

    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15

    CAS  Article  Google Scholar 

  2. 2.

    Michel D, Xiao F, Alameh K (2017) A compact, flexible fibre-optics surface plasmon resonance sensor with changeable sensor chips. Sensors Actuators B Chem 246:33

  3. 3.

    Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11:1565–1588

    Article  Google Scholar 

  4. 4.

    Byun KM, Kim SJ, Kim D (2006) Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowires. Appl Opt 45:3382

    Article  Google Scholar 

  5. 5.

    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    CAS  Article  Google Scholar 

  6. 6.

    Gupta G, Kondoh J (2007) Tuning and sensitivity enhancement of surface plasmon resonance sensor. B Chem 122:381

    CAS  Google Scholar 

  7. 7.

    Yuk JS, Hong D-G, Jung J-W, Jung S-H, Kim H-S, Han J-A, Kim Y-M, Ha K-S (2006) Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays. Eur Biophys J 35:469–476

    CAS  Article  Google Scholar 

  8. 8.

    Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70

    CAS  Article  Google Scholar 

  9. 9.

    Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37:1175–1177

    CAS  Article  Google Scholar 

  10. 10.

    Lahav A, Shalabaney A, Abdulhalim I (2009) Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J Nanophotonics 3:1

    Article  Google Scholar 

  11. 11.

    Suzuki H, Sugimoto M, Matsui Y, Kondoh J (2006) Fundamental characteristics of a dual-colour fibre optic SPR sensor. Meas Sci Technol 17:1547–1552

    CAS  Article  Google Scholar 

  12. 12.

    Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin A (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15:1745

    CAS  Article  Google Scholar 

  13. 13.

    Badshah MA, Ju J, Lu X, Abbas N, Kim SM (2018) Enhancing the sensitivity of DNA microarrays by metal-enhanced fluorescence using vertical nanorod structures. Sensors Actuators B Chem 274:451

    CAS  Article  Google Scholar 

  14. 14.

    Okamoto H, Imura K (2009) Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Prog Surf Sci 84:199–229

    CAS  Article  Google Scholar 

  15. 15.

    Guzatov DV, Gaponenko SV, Demir HV (2018) Colloidal photoluminescent refractive index nanosensor using plasmonic effects. Zeitschrift Fur Phys Chemie 232:1431–1441

    CAS  Article  Google Scholar 

  16. 16.

    Kachan SM, Ponyavina AN (2001) Resonance absorption spectra of composites containing metal-coated nanoparticles. J Mol Struct 563–564:267–272

  17. 17.

    Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3:543–547

    CAS  Article  Google Scholar 

  18. 18.

    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    CAS  Article  Google Scholar 

  19. 19.

    Jain PK, El-Sayed MA (2008) Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett 8:4347–4352

    CAS  Article  Google Scholar 

  20. 20.

    Lopatynskyi AM, Lopatynska OG, Guo LJ, Chegel VI (2011) Localized surface plasmon resonance biosensor—part I: theoretical study of sensitivity—extended Mie approach. IEEE Sensors J 11:361–369

    CAS  Article  Google Scholar 

  21. 21.

    Duboisset J, Russier-Antoine I, Benichou E, Bachelier G, Jonin C, Brevet PF (2009) Single metallic nanoparticle sensitivity with hyper Rayleigh scattering. J Phys Chem C 113:13477–13481

    CAS  Article  Google Scholar 

  22. 22.

    Byun KM, Kim D, Kim SJ (2006) Sensors actuators. B Chem 117:401

    CAS  Google Scholar 

  23. 23.

    Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Opt Express 15:8163–8169

    CAS  Article  Google Scholar 

  24. 24.

    El-Gohary SH, Eom S, Lee SY, Byun KM (2016) Dispersion curve-based sensitivity engineering for enhanced surface plasmon resonance detection. Opt Commun 370:299–305

    CAS  Article  Google Scholar 

  25. 25.

    Malic L, Cui B, Veres T, Tabrizian M (2007) Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. Opt Lett 32:3092–3094

    CAS  Article  Google Scholar 

  26. 26.

    Kim D (2006) Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors. J Opt Soc Am A 23:2307

    Article  Google Scholar 

  27. 27.

    Byun KM, Yoon SJ, Kim D, Kim SJ (2007) Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32:1902–1904

    CAS  Article  Google Scholar 

  28. 28.

    Kim H-S, Lee B-H, Oh G-Y, Lee T-K, Kim D-G, Kim T-R, Choi Y-W (2016) Significantly enhanced sensitivity of surface plasmon resonance sensor with self-assembled metallic nanoparticles. J Nanophotonics 10:026012

    Article  Google Scholar 

  29. 29.

    Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    CAS  Article  Google Scholar 

  30. 30.

    Raether H (2006) in Surf. plasmons smooth rough surfaces gratings (Springer, Berlin, Heidelberg), pp. 58–72

  31. 31.

    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    CAS  Article  Google Scholar 

  32. 32.

    Sarid D, Challener W (2010) in Mod. introd. to surf. plasmons (Cambridge University Press, Cambridge), 283–304

  33. 33.

    Badshah MA, Kim J, Jang H, Kim SM (2018) Fabrication of highly packed plasmonic nanolens array using polymer nanoimprinted nanodots for an enhanced fluorescence substrate. Polymers (Basel) 10:649

  34. 34.

    Dormeny AA, Abedini Sohi P, Kahrizi M (2020) Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures. Results Phys 16:102869

  35. 35.

    Kume T, Nakagawa N, Hayashi S, Yamamoto K (1995) Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface. Solid State Commun 93:171–175

    CAS  Article  Google Scholar 

  36. 36.

    Roy D (2001) Optical characterization of multi-layer thin films using the surface plasmon resonance method: a six-phase model based on the Kretschmann formalism. Opt Commun 200:119–130

    CAS  Article  Google Scholar 

  37. 37.

    Badshah MA, Ju J, Hong D, Jang H, Kim S, Park JS (2016) Fabrication and characterization of glancing angle deposited nanostructured surfaces for enhanced boiling heat transfer. J Vac Sci Technol B 34:051803

    Article  Google Scholar 

  38. 38.

    Hawkeye MM, Brett MJ (2007) Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol A Vacuum Surfaces Film. 25, 1317

  39. 39.

    Dick B, Brett MJ, Smy T, Vac J (2003) Controlled growth of periodic pillars by glancing angle deposition. Sci Technol B Microelectron Nanom Struct 21:23

    CAS  Article  Google Scholar 

  40. 40.

    Luo W, Wang R, Li H, Kou J, Zeng X, Huang H, Hu X, Huang W (2019) Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors. Opt Express 27:576

    CAS  Article  Google Scholar 

  41. 41.

    Xiao F, Michel D, Li G, Xu A, Alameh K (2014) Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J Lightwave Technol 32:3567

    Article  Google Scholar 

  42. 42.

    Xiao F, Li G, Alameh K, Xu A (2012) Fabry–Pérot-based surface plasmon resonance sensors. Opt Lett 37:4582–4584

    Article  Google Scholar 

  43. 43.

    Aouani H, Wenger J, Gérard D, Rigneault H, Devaux E, Ebbesen TW, Mahdavi F, Xu T, Blair S (2009) Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. ACS Nano 3:2043–2048

    CAS  Article  Google Scholar 

  44. 44.

    Mohamad NR, Mei GS, Jamil NA, Majlis B, Menon PS (2019) Influence of ultrathin chromium adhesion layer on different metal thicknesses of SPR-based sensor using FDTD. Mater Today Proc 7:732–737

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and Australian Endeavour Award (2017–2018) funded by the Australian Ministry of Education.

Author information




In this paper, Seok-min Kim and Kamal Almeh conceived the idea and continuously collaborated during the experimental and modeling phase. Mohsin Ali Badshah, David Michel, and Nur E Alam fabricated the prototype sample. Imtiaz Madni conducted the characterization experiments. Mohsin Ali Badshah and Naseem Abbas performed the simulations. Mohsin Ali Badshah and David Michel wrote the paper. Seok-min Kim and Kamal Alameh proofread and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kamal Alameh or Seok-min Kim.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badshah, M.A., Michel, D., Alam, N.E. et al. Enhancing the Sensitivity of a Surface Plasmon Resonance Sensor with Glancing Angle Deposited Nanostructures. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01245-0

Download citation


  • Glancing angle deposition
  • Surface plasmon resonance
  • Localized surface plasmon resonance
  • Refractive index
  • Nanostructures