Skip to main content
Log in

Wavelength-Dependent Optical Chiralities of Symmetric and Asymmetric 2-Shaped Au Nanorod Structures at Nanoscales

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Two-shaped Au nanorod structures are used to create the optical chiralities at the surface plasmon resonances (SPRs) from visible to near-infrared wavelength range, which is theoretically explored by using the 3D finite difference time-domain method. To understand the effects of the middle horizontal Au nanorod on the optical energy coupling between the upper inverted L-shaped Au nanorods and the bottom regular L-shaped Au nanorods, the near-field distributions of the asymmetric and symmetric 2-shaped Au nanorod structures are discussed. The simulation results show that the three horizontal Au nanorods can effectively harvest the x-directed electric field of incident lightwaves and generate the z-directed electric field near the corners of Au nanorods and thereby result in the local optical chiralities at the three SPRs. In addition, the optical energy coupling from the horizontal Au nanorods to the vertical Au nanorods can contribute to the total optical chirality. The understanding of local and total optical chiralities of Au planar nanostructures at nanoscales helps us find the best way to optimize the metallic chiral nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2:85–100

    CAS  Google Scholar 

  2. Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549–554

    Article  CAS  Google Scholar 

  3. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:1641–1648

    Article  CAS  Google Scholar 

  4. Ma RM, Oulton RF, Sorger VJ, Zhang X (2007) Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev 7:1–21

    Article  CAS  Google Scholar 

  5. Vesseur EJR, Waele RD, Lezec HJ, Atwater HA, García de Abajo FJ, Polman A (2008) Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl Phys Lett 92:083110

    Article  CAS  Google Scholar 

  6. Gao H, Henzie J, Lee MH, Odom TW (2008) Screening plasmonic materials using pyramidal gratings. Proc Natl Acad Sci 105:20146–20151

    Article  Google Scholar 

  7. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  8. Ye JS, Matsuyama N, Kanamori Y, Hane K (2008) Silicon suspended resonant grating filters fabricated from a silicon-on-insulator wafer. IEEE Photon Technol Lett 20:851–853

    Article  CAS  Google Scholar 

  9. De Waele R, Burgos SP, Polman A, Atwater H (2009) Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nano Lett 9:2832–2837

    Article  CAS  Google Scholar 

  10. Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X (2009) Plasmonic Fabry-Perot nanocavity. Nano Lett 9:3489–3493

    Article  CAS  Google Scholar 

  11. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  12. Zhou W, Odom TW (2011) Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat Nanotechnol 6:423–427

    Article  CAS  Google Scholar 

  13. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 8:3913–3961

    Article  CAS  Google Scholar 

  14. Chen YT, Wu JR, Thakur D, Cheng HM, Chang SH (2019) Efficiency enhancement of light extraction from an air/GaN interface via nanogap-induced mode splitting. Adv Theory Simul 2:1900073

    Article  CAS  Google Scholar 

  15. Rajaei M, Zeng J, Albooyeh M, Kamandi M, Hanifeh M, Capolino F, Wickramasinghe HK (2019) Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures. ACS Photonics 6:924–931

    Article  CAS  Google Scholar 

  16. Le KQ (2020) X-shaped chiral plasmonic nanostructured metasurfaces: aA numerical study. Opt Commun 456:124639

    Article  CAS  Google Scholar 

  17. Valev VK, Silhanek AV, De Clercq B, Gillijns W, Jeyaram Y, Zheng X, Volskiy V, Aktsipetrov OA, Vandenbosch GA, Ameloot M, Moshchalkov VV (2011) U-shaped switches for optical information processing at the nanoscale. Small 7:2573–2576

    Article  CAS  Google Scholar 

  18. Valev VK, Silhanek AV, Jeyaram Y, Denkova D, De Clercq B, Petkov V, Zheng X, Volskiy V, Gillijns W, Vandenbosch GAE, Aktsipetrov OA (2011) Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques. Phys Rev Lett 106:226803

    Article  CAS  Google Scholar 

  19. Zhang R, Zhao Q, Wang X, Gao W, Li J, Tam WY (2019) Measuring circular phase-dichroism of chiral metasurface. Nanophotonics 8(5):909–920

    Article  Google Scholar 

  20. Okamoto H (2019) Local optical activity of nano- to microscale materials and plasmons. J Mater Chem C 7:14771–14787

    Article  CAS  Google Scholar 

  21. Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858

    Article  CAS  Google Scholar 

  22. Valev VK, Smisdom N, Silhanek AV, De Clercq B, Gillijns W, Ameloot M, Moshchalkov VV, Verbiest T (2009) Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett 9:3945–3948

    Article  CAS  Google Scholar 

  23. Tang Y, Cohen AE (2010) Optical chirality and its interaction with matter. Phys Rev Lett 104:163901

    Article  CAS  Google Scholar 

  24. Tsakmakidis KL, Hess O, Boyd RW, Zhang X (2017) Ultraslow waves on the nanoscale. Science 358(6361):5196

    Article  CAS  Google Scholar 

  25. Chang SH, Lin KF, Chiang CH, Chen SH, Wu CG (2014) Plasmonic structure enhanced exciton generation at the interface between the perovskite absorber and copper nanoparticles. Sci World J 2014:128414

    Google Scholar 

  26. Taylor AB, Michaux P, Mohsin SM, Chon WM (2014) Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt Express 22(11):13234–13243

    Article  CAS  Google Scholar 

  27. Rakic AD, Djurisic AB, Elazar JM, Majewski L (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  28. Zhao AP (2000) An efficient PML implementation for the ADI-FDTD method. IEEE Micro Wire Components Lett 14:248–249

    Article  Google Scholar 

  29. Lesina AC, Vaccari A, Berini P, Ramunno L (2015) On the convergence and accuracy of the FDTD method for nanoplasmonics. Opt Express 23(8):10481–10497

    Article  CAS  Google Scholar 

  30. Tai CY, Tang PW, Yu WH, Chang SH (2015) Label-free multi-color superlocalization of plasmonic emission within metallic nano-interstice using femtosecond chirp-manipulated four wave mixing. Opt Express 23(25):32113–32129

    Article  CAS  Google Scholar 

  31. Chang SH (2013) Modeling and design of Ag, Au, and Cu nanoplasmonic structures for enhancing the absorption of P3HT:PCBM-based photovoltaics. IEEE Photonics J 5(3):4800509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Hsiung Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JR., Kassou, S., Thakur, D. et al. Wavelength-Dependent Optical Chiralities of Symmetric and Asymmetric 2-Shaped Au Nanorod Structures at Nanoscales. Plasmonics 15, 2053–2059 (2020). https://doi.org/10.1007/s11468-020-01230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01230-7

Keywords

Navigation