Skip to main content
Log in

Ultracompact Plasmonic Meta-pixel for Arbitrary Polarization Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Polarization of light is a fundamental characteristic which represents the oscillation of electric fields in electromagnetic optics. The utilization of polarization gives opportunities to analyze the light-matter interaction or improve the performance of optical devices. Miniaturization of polarimeter consisting of bulky optical components is an important challenge for applying to integrated photonic chips or sensors. In this letter, we propose a compact plasmonic polarimeter with six different plasmonic lenses for detecting Stokes parameters in near field. Each plasmonic lens, which focuses plasmonic fields under the specific polarization incidence, can be designed by pairs of nanoslit with different configurations. We theoretically and numerically show that the intensities of plasmonic focal spots can derive full Stokes parameter. We expect that the proposed work can contribute to miniaturization and integration of polarimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robinson MG, Chen J, Sharp GD (2005) Polarization engineering for LCD projection. Wiley, England

    Book  Google Scholar 

  2. Zhang Z, You Z, Chu D (2014) Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 3:e213

    Article  Google Scholar 

  3. Noda J, Okamoto K, Sasaki Y (1986) Polarization-maintaining fibers and their applications. J Lightwave Technol 4:1071–1089

    Article  Google Scholar 

  4. Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F (2017) Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118:113901

    Article  Google Scholar 

  5. Saleh BEA, Teich MC (2007) Fundamentals of photonics. 2nd ed. Wiley, p 202

  6. Matchko RM, Gerhart GR (2008) High-speed imaging chopper polarimetry. Opt Eng 47:016001

    Article  Google Scholar 

  7. Tyo JS, Goldstein DL, Chenault DB, Shaw JA (2006) Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45:5453–5469

    Article  Google Scholar 

  8. Choudhury SM, Wang D, Chaudhuri K, DeVault C, Kildishev AV, Boltasseva A, Shalaev VM (2018) Material platforms for optical metasurfaces. Nanophotonics 7:959–987

    Article  Google Scholar 

  9. Lee GY, Yoon G, Lee SY, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B (2017) Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10:4237–4245

    Article  Google Scholar 

  10. Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F (2019) Broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10:355

    Article  CAS  Google Scholar 

  11. Chen WT, Zhu AY, Sisler J, Huang Y, Yousef KMA, Lee E, Qiu C, Capasso F (2018) Broadband achromatic metasurface-refractive optics. Nano Lett 18:7801–7808

    Article  CAS  Google Scholar 

  12. Lee GY, Hong JY, Hwang S, Moon S, Kang H, Jeon S, Kim H, Jeong JH, Lee B (2018) Metasurface eyepiece for augmented reality. Nat Commun 9:4562

    Article  CAS  Google Scholar 

  13. Jeong HD, Lee SY (2018) Tunable plasmonic absorber using a nanoslit array patterned on a Ge2Sb2Te5-inserted Fabry-Pérot resonator. J Lightwave Technol 36:5857–5862

    Article  CAS  Google Scholar 

  14. Lee D, Han SY, Jeong Y, Nguyen DM, Yoon G, Mun J, Chae J, Lee JH, Ok JG, Jung GY, Park HJ, Kim K, Rho J (2018) Polarization-sensitive tunable absorber in visible and near-infrared regimes. Sci Rep 8:12393

    Article  CAS  Google Scholar 

  15. Hedayati KM, Elbahri M (2017) Review of metasurface plasmonic structural color. Plasmonics 12:1463–1479

    Article  Google Scholar 

  16. Zhang Y, Gao J, Yang X (2019) Spatial variation of vector vortex beams with plasmonic metasurfaces. Sci Rep 9:9969

    Article  CAS  Google Scholar 

  17. Ding F, Pors A, Chen Y, Zenin VA, Bozhevolnyi SI (2017) Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4:943–949

    Article  CAS  Google Scholar 

  18. Chen WT, Török P, Foreman MR, Liao CY, Tsai WY, Wu PR, Tsai DP (2016) Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27:224002

    Article  CAS  Google Scholar 

  19. Pors A, Nielsen MG, Bolzhevolnyi SI (2015) Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2:716–723

    Article  CAS  Google Scholar 

  20. Espinosa-Soria A, Rodríguez-Fortuño FJ, Griol A, Martínez A (2017) On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light. Nano Lett 17:3139–3144

    Article  CAS  Google Scholar 

  21. Lee K, Yun H, Mun SE, Lee GY, Sung J, Lee B (2018) Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev 12:1700297

    Article  CAS  Google Scholar 

  22. Lee SY, Kim K, Kim SJ, Park H, Kim KY, Lee B (2015) Plasmonic meta-slit: shaping and controlling near-field focus. Optica 2:6–13

    Article  CAS  Google Scholar 

  23. Song EY, Lee SY, Hong J, Lee K, Lee Y, Lee GY, Kim H, Lee B (2016) A double-lined metasurface for plasmonic complex-field generation. Laser Photonics Rev 10:299–308

    Article  CAS  Google Scholar 

  24. Moon SW, Jeong HD, Lee S, Lee B, Ryu YS, Lee SY (2019) Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation. Opt Express 27:19119–19129

    Article  CAS  Google Scholar 

  25. Huang F, Jiang X, Yuan H, Yang H, Li S, Sun X (2016) Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses. Opt Lett 41:1684–1687

    Article  CAS  Google Scholar 

  26. Lin J, Balthasar Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340:331–334

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (No. 2017R1C1B2003585). This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00001, Development of Holo-TV Core Technologies for Hologram Media Services).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeol Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, SW., Lee, SY. Ultracompact Plasmonic Meta-pixel for Arbitrary Polarization Detection. Plasmonics 15, 1781–1788 (2020). https://doi.org/10.1007/s11468-020-01201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01201-y

Keywords

Navigation