Skip to main content

Advertisement

Log in

Room Temperature Preparation of Surface-Clean Hydrogen-Doped Plasmonic Molybdenum Oxide as a High-Efficient and Degradable Reactive Oxygen Species Scavenger

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Considerable efforts have been made to develop reactive oxygen species (ROS) scavengers for removing high level of ROS. However, most of the reported ROS scavengers are nondegradable and involve harsh reaction conditions as well as utilize various surface ligands. In order to overcome these drawbacks, in the present work, we develop a facile and mild synthesis avenue for preparation of surface-clean hydrogen-doped molybdenum oxide (H0.34MoO3) via simply mixing MoO3 dispersion with aluminum foil under an acidic environment without any surface capping reagents at room temperature. The resulting H0.34MoO3 can act as a broad-spectrum ROS scavenger, including .OH, H2O2, O2, and 1O2 as well as 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The free radical scavenging activity of H0.34MoO3 achieves as high as 71.6% and 99.1% for .OH and DPPH scavenging, which is comparable and superior to that of ascorbic acid that is a classic free radical scavenger. More significantly, the resulting H0.34MoO3 is degrade, which can be degraded into molybdate ions under a neutral environment (pH 7.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432

    Article  CAS  Google Scholar 

  2. Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im H-J, Kang L, Cho SY (2018) Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun 9:5421

    Article  CAS  Google Scholar 

  3. Lian M, Xue Z, Qiao X, Liu C, Zhang S, Li X, Huang C, Song Q, Yang W, Chen X (2019) Movable hollow nanoparticles as reactive oxygen scavengers. Chem 5:2378–2387

    Article  CAS  Google Scholar 

  4. Valgimigli L, Baschieri A, Amorati R (2018) Antioxidant activity of nanomaterials. J Mater Chem B 6:2036–2051

    Article  CAS  Google Scholar 

  5. Ueno T, Ikeda T, Tsukimura N, Ishijima M, Minamikawa H, Sugita Y, Yamada M, Wakabayashi N, Ogawa T (2016) Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials 108:177–186

    Article  CAS  Google Scholar 

  6. Watanabe A, Kajita M, Kim J, Kanayama A, Takahashi K, Mashino T, Miyamoto Y (2009) In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 20:455105

    Article  CAS  Google Scholar 

  7. Nilewski L, Mendoza K, Jalilov AS, Berka V, Wu G, Sikkema WK, Metzger A, Ye R, Zhang R, Luong DX (2019) Highly oxidized Graphene quantum dots from coal as efficient antioxidants. ACS Appl Mater Inter

  8. Bao X, Zhao J, Sun J, Hu M, Yang X (2018) Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12:8882–8892

    Article  CAS  Google Scholar 

  9. Liu Y, Wu H, Li M, Yin J-J, Nie Z (2014) pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6:11904–11910

    Article  CAS  Google Scholar 

  10. Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H (2018) ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 9:2927–2933

    Article  CAS  Google Scholar 

  11. Samuel EL, Marcano DC, Berka V, Bitner BR, Wu G, Potter A, Fabian RH, Pautler RG, Kent TA, Tsai A-L (2015) Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. P Natl A Sci India B 112:2343–2348

    Article  CAS  Google Scholar 

  12. Ruiz V, Yate L, García I, Cabanero G, Grande H-J (2017) Tuning the antioxidant activity of graphene quantum dots: protective nanomaterials against dye decoloration. Carbon 116:366–374

    Article  CAS  Google Scholar 

  13. Xue Y, Zhai Y, Zhou K, Wang L, Tan H, Luan Q, Yao X (2012) The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chem-Eur J 18:11115–11122

    Article  CAS  Google Scholar 

  14. Zhai Y, Zhang Y, Qin F, Yao X (2015) An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron 70:130–136

    Article  CAS  Google Scholar 

  15. Kim H-S, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 16:454–460

    Article  CAS  Google Scholar 

  16. Wang X, Xie Y, Tang K, Wang C, Yan C (2018) Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew Chem Int Edit 57:11569–11573

    Article  CAS  Google Scholar 

  17. Wang R, Lu X, Hao L, Jiao W, Liu W, Zhang J, Yuan F, Yang F (2017) Enhanced and tunable photochromism of MoO3–butylamine organic–inorganic hybrid composites. J Mater Chem C 5:427–433

    Article  CAS  Google Scholar 

  18. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  19. Li Y, Cheng J, Li J, Zhu X, He T, Chen R, Tang Z (2018) Tunable Chiroptical properties from the plasmonic band to metal–ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew Chem Int Edit 130:10393–10397

    Article  Google Scholar 

  20. de Castro IA, Datta RS, Ou JZ, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K (2017) Molybdenum oxides–from fundamentals to functionality. Adv Mater 29:1701619

    Article  CAS  Google Scholar 

  21. Agrawal A, Johns RW, Milliron DJ (2017) Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mater Res 47:1–31

    Article  CAS  Google Scholar 

  22. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207

    Article  CAS  Google Scholar 

  23. Mattox TM, Ye X, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ (2015) Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv Mater 27:5830–5837

    Article  CAS  Google Scholar 

  24. Cheng H, Wen M, Ma X, Kuwahara Y, Mori K, Dai Y, Huang B, Yamashita H (2016) Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. J Am Chem Soc 138:9316–9324

    Article  CAS  Google Scholar 

  25. Alsaif MM, Latham K, Field MR, Yao DD, Medehkar NV, Beane GA, Kaner RB, Russo SP, Ou JZ, Kalantar-zadeh K (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937

    Article  CAS  Google Scholar 

  26. Li H, McRae L, Firby CJ, Al-Hussein M, Elezzabi AY (2018) Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy 47:130–139

    Article  CAS  Google Scholar 

  27. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem Int Edit 53:2910–2914

    Article  CAS  Google Scholar 

  28. Liu W, Xu Q, Cui W, Zhu C, Qi Y (2017) CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew Chem Int Edit 56:1600–1604

    Article  CAS  Google Scholar 

  29. Du J, Wang J, Deng Y, He Y (2020) Plasmonic hot electron transfer-induced multicolor MoO3-x-based chromogenic system for visual and colorimetric determination of silver(I). Microchim Acta 187:120

    Article  CAS  Google Scholar 

  30. Li M, Huang X, Yu H (2019) A colorimetric assay for ultrasensitive detection of copper (II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mat Sci Eng C 101:614–618

    Article  CAS  Google Scholar 

  31. Ai R, He Y (2020) Covalent organic framework-inspired chromogenic system for visual colorimetric detection of carcinogenic 3, 3′-diaminobenzidine. Sens Actuators B-Chem 304:127372

    Article  CAS  Google Scholar 

  32. Ding D, Huang W, Song C, Yan M, Guo C, Liu S (2017) Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun 53:6744–6747

    Article  CAS  Google Scholar 

  33. Wang J, Yang Y, Li H, Gao J, He P, Bian L, Dong F, He Y (2019) Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem Sci 10:6330–6335

    Article  CAS  Google Scholar 

  34. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) A Plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 27:4616–4621

    Article  CAS  Google Scholar 

  35. Huang W, Wang J, Du J, Deng Y, He Y (2019) Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3, 3′-diaminobenzidin. Microchim Acta 186:79

    Article  CAS  Google Scholar 

  36. Song G, Hao J, Liang C, Liu T, Gao M, Cheng L, Hu J, Liu Z (2016) Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew Chem Int Edit 55:2122–2126

    Article  CAS  Google Scholar 

  37. Tang C, Wang Y, Long Y, An X, Shen J, Ni Y (2017) Anchoring 20 (R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustain Chem Eng 5:7507–7513

    Article  CAS  Google Scholar 

  38. Jing Y, Chaplin BP (2017) Mechanistic study of the validity of using hydroxyl radical probes to characterize electrochemical advanced oxidation processes. Environ Sci Technol 51:2355–2365

    Article  CAS  Google Scholar 

  39. Song J, Ni X, Gao L, Zheng H (2007) Synthesis of metastable h-MoO3 by simple chemical precipitation. Mater Chem Phys 102:245–248

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Undergraduate Accuracy Fund Project of Southwest University of Science and Technology (JZ19-20) and National Natural Science Foundation of China (21705134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, H., Yu, H. et al. Room Temperature Preparation of Surface-Clean Hydrogen-Doped Plasmonic Molybdenum Oxide as a High-Efficient and Degradable Reactive Oxygen Species Scavenger. Plasmonics 15, 1827–1833 (2020). https://doi.org/10.1007/s11468-020-01193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01193-9

Keywords

Navigation