Skip to main content
Log in

A Metamaterial Absorber Operating in the Visible Light Band Based on a Cascade Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a broadband and polarization-insensitive metamaterial absorber (MA) operating in the visible light band based on a cascade structure is proposed, and the main structure of MA consists of three metal resonator layers (MRLs), a metal reflector at the bottom, and a dielectric substrate between them. Each MRL consists of four different resonators. The similar resonator is proportional to the size of the top view in the different MRLs. Through the different absorption effects generated by different MRLs, a MA working in the visible light band is obtained, which can cover 490–825 nm. Absorption bandwidth can be expanded by adding different MRLs and placing different resonators near the same layer. The center frequency of the absorption spectrum can be controlled by changing the layer distance between different MRLs. To better understand the physical mechanism of absorption, the electric and magnetic field intensity distributions, the power flows, and the power loss densities also are investigated. We also found that the better permanence can be obtained with the lower incident angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Padilla WJ (2007) Group theoretical description of artificial electromagnetic metamaterials. Opt Express 15(4):1639–1646

    Article  PubMed  Google Scholar 

  2. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112(28):10323–10337

    Article  CAS  Google Scholar 

  3. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44(15):3917–3927

    Article  CAS  Google Scholar 

  4. Lv H, Liang X, Cheng Y, Zhang H, Du Y (2015) Coin-like α-fe2o3@cofe2o4 core-shell composites with excellent electromagnetic absorption performance. J Mater Chem C 3(19):5056–5064

    Article  CAS  Google Scholar 

  5. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  PubMed  Google Scholar 

  6. Scalari G, Maissen C, Turcinkova D, Hagenmuller D, De Liberato S, Ciuti C (2012) Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335(6074):1323–1326

    Article  CAS  PubMed  Google Scholar 

  7. Yannopapas V (2006) Negative index of refraction in artificial chiral materials. J Phys-Condens Mat 18(29):6883–6890

    Article  CAS  Google Scholar 

  8. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Edit 49(51):9838–9852

    Article  CAS  Google Scholar 

  9. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SCC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187

    Article  CAS  Google Scholar 

  10. Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438(7066):335–338

    Article  CAS  PubMed  Google Scholar 

  11. Ziolkowski RW, Heyman E (2001) Wave propagation in media having negative permittivity and permeability. Phys Rev E 64(5 Pt 2):056625

    Article  CAS  Google Scholar 

  12. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  Google Scholar 

  13. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):OP98–OP120

    CAS  Google Scholar 

  14. Dung NV, Tung BS, Khuyen BX, Yoo YJ, Lee YP, Rhee JY (2016) Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions. J Korean Phys Soc 68(8):1008–1013

    Article  CAS  Google Scholar 

  15. Lu X, Xiao Z, Chen M (2019) Quarter mode rectangular cavity-based prefect metamaterial absorber in the terahertz region. Mod Phys Lett B 33(36):1950460

    Article  CAS  Google Scholar 

  16. Nefedov IS, Valaginnopoulos CA, Melnikov LA (2013) Perfect absorption in graphene multilayers. J Optics-UK 15(11):114003

    Article  CAS  Google Scholar 

  17. Liao YL, Zhao Y (2019) Ultra-narrowband mid-infrared absorber based on Mie resonance in dielectric metamaterials. Can J Phy (18). https://doi.org/10.1139/cjp-2019-0336

  18. Cooper KB, Dengler RJ, Llombart N, Bryllert T, Chattopadhyay G, Mehdi I (2009) An approach for sub-second imaging of concealed objects using terahertz (THz) radar. J Infrared Millim TE 30(12):1297–1307

    Google Scholar 

  19. Ginzburg P, Fortuño FR, Wurtz G, Dickson W, Murphy A, Morgan F, Pollard R, Iorsh I, Atrashchenko A, Belov P (2013) Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt Express 21(12):14907–14917

    Article  CAS  PubMed  Google Scholar 

  20. Brongersma ML, Lin D, Fan P, Hasman E (2016) Dielectric metasurface optical elements

  21. Wilson RH, Brost RC, Strip DR, Sudol RJ, McLaughlin PO (2004) Considerations for tolerancing aspheric optical components. Appl Opt 43(1):57–66

    Article  PubMed  Google Scholar 

  22. Hu D, Wang HY, Tang ZJ, Zhang XW (2016) Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies. Appl Opt 55(19):5257–5262

    Article  CAS  PubMed  Google Scholar 

  23. Arik K, Abdollahramezani S, Farajollahi S, Khavasi A, Rejaei B (2016) Design of mid-infrared ultra-wideband metallic absorber based on circuit theory. Opt Commun 381:309–313

    Article  CAS  Google Scholar 

  24. Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Taylor AJ, Chen HT (2012) Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt Lett 37(2):154

    Article  PubMed  Google Scholar 

  25. Kenney M, Grant J, Shah YD, Escorcia-Carranza I, Humphreys M, Cumming DRS (2017) Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers. ACS Photonics 4(10):2604–2612

    Article  CAS  Google Scholar 

  26. Huang JH, Velusamy M, Ho KC, Lin JT, Chu CW (2010) A ternary cascade structure enhances the efficiency of polymer solar cells. J Mater Chem 20(14):2820–2825

    Article  CAS  Google Scholar 

  27. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  CAS  PubMed  Google Scholar 

  28. Hu C, Liu L, Zhao Z, Chen XN, Luo X (2009) Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt Express 17:16745–16749

    Article  CAS  PubMed  Google Scholar 

  29. Youn S, Rho T, Min B, Kim KS (2007) Extended Drude model analysis of noble metals. Phys Status Solidi B 244(4):1354–1362

    Article  CAS  Google Scholar 

  30. Zhang HF, Tian XL, Liu GB, Kong XR (2019) A gravity tailored broadband metamaterial absorber containing liquid dielectrics. IEEE Access 7:25827–25835

    Article  Google Scholar 

Download references

Funding

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927), and Sponsored by NUPTSF (Grant No. NY217131), and Jiangsu Overseas Visiting Scholar Program for the University prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HF., Liu, HB., Hu, CX. et al. A Metamaterial Absorber Operating in the Visible Light Band Based on a Cascade Structure. Plasmonics 15, 1755–1766 (2020). https://doi.org/10.1007/s11468-020-01190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01190-y

Keywords

Navigation