Skip to main content

Plasmonic Properties of Gold Nanostructures on Gold Film

Abstract

This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Sarkar M, Besbes M, Moreau J, Bryche JF, Olivéro A, Barbillon G, Coutrot AL, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics 2:237–245

    Article  CAS  Google Scholar 

  2. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252

    Article  CAS  Google Scholar 

  3. Mock JJ, Hill RT, Tsai YJ, Chilkoti A, Smith DR (2012) Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett 12:1757–1764

    Article  CAS  Google Scholar 

  4. Lassiter JB, McGuire F, Mock JJ, Ciraci C, Hill RT, Wiley BJ, Chilkoti A, Smith DR (2013) Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett 13:5866–5872

    Article  CAS  Google Scholar 

  5. Wang W, Bai X, Pang Z, Yang H, Qi Y (2019) Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube. Results in Physics 12:1866–1870

    Article  Google Scholar 

  6. Wang W, Bai X, Pang Z, Zhu J, Wu Y, Yang H, Qi Y, Wen X (2019) Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Opt Mater Express 9:1872–1881

    Article  CAS  Google Scholar 

  7. Wang W, Zhu J, Wen X, Wu X, Su Y, Tong H, Qi Y, Yang H (2019) Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film. Opt Mater Express 9:3079–3088

    Article  CAS  Google Scholar 

  8. Wang W, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H, Qi Y (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2spacer. Chin Phys B 28:044201

    Article  CAS  Google Scholar 

  9. Chen J, Hu J (2014) Strong coupling between localized and propagating surface plasmon modes in a noncentrosymmetric metallic photonic slab. J Opt Soc Am B 31:1600–1606

    Article  CAS  Google Scholar 

  10. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244–246

    Article  CAS  Google Scholar 

  11. Sarkar M, Bryche JF, Moreau J, Besbes M, Barbillon G, Bartenlian B, Canva M (2015) Opt Express 23:27376–27390

    Article  CAS  Google Scholar 

  12. Felid N, Lau Truong S, Aubard J, Lévi G, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2004) Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. J Chem Phys 120:7141–7146

    Article  CAS  Google Scholar 

  13. Baltar H, Drozdowicz-Tomsia K, Goldys EM (2018) Plasmonic properties of periodic arrays of Ag nanocylinders and dimers, and the effects of an underlying Ag layer. J Phys Chem C 122:22083–22093

    Article  CAS  Google Scholar 

  14. Gillibert R, Tafar T, de la Chapelle ML (2017) Physica Status Solidi A 214:1600793

    Article  CAS  Google Scholar 

  15. Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Phys Rev B 75:085104

    Article  CAS  Google Scholar 

  16. Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. J Opt A Pure Appl Opt 9:S366–S371

    Article  Google Scholar 

  17. Banville FA, Moreau J, Sarkar M, Besbes M, Canva M, Charette PG (2018) Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design. Opt Express 26:10616–10630

    Article  CAS  Google Scholar 

  18. Toma M, Knoll W, Dostalek J (2012) Plasmonics 7:293–299

    Article  CAS  Google Scholar 

  19. Indutnyi IZ, Ushenin YV, Min'ko VI, Shepeliavyi PE, Lukaniuk AA, Korchovyi AA, Khrystosenko RV (2017) Nanostructured Au chips with enhanced sensitivity for sensors based on surface plasmon resonance. Ukr J Phys 62:365–371

    Article  Google Scholar 

  20. Toma M, Toma K, Adam P, Homola J, Knoll W, Dostalek J (2012) Opt Express 20:14042–14053

    Article  CAS  Google Scholar 

  21. Bryche JF, Gillibert R, Barbillon G, Gogol P, Moreau J, de la Chapelle ML, Bartenlian B, Canva M (2016) Plasmonics 11:601–608

    Article  CAS  Google Scholar 

  22. Bryche JF, Gillibert R, Barbillon G, Sarkar M, Coutrot AL, Hamouda F, Aassime A, Moreau J, de la Chapelle ML, Bartenlian B, Canva M (2015) J Mater Sci 50:6601–6607

    Article  CAS  Google Scholar 

  23. Bryche JF, Tsigara A, Bélier B, de la Chapelle ML, Canva M, Bartenlian B, Barbillon G (2016) Sensors Actuators B 228:31–35

    Article  CAS  Google Scholar 

  24. Magno G, Bélier B, Barbillon G (2017) Gold thickness impact on the enhancement of SERS detection in low-cost Au/Si nanosensors. J Mater Sci 52:13650–13656

    Article  CAS  Google Scholar 

  25. Gillibert R, Sarkar M, Bryche JF, Yasukuni R, Moreau J, Besbes M, Barbillon G, Bartenlian B, Canva M, de la Chapelle ML (2016) Nanotechnology 27:115202

    Article  CAS  Google Scholar 

  26. Gillibert R, Sarkar M, Moreau J, Besbes M, Canva M, Lamy de la Chapelle M, Phys J (2016) Chem C 120:27562–27570

    CAS  Google Scholar 

  27. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy†. J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  28. Le Ru EC, Grand J, Felidj N, Aubard J, Levi G, Hohenau A, Krenn JR, Blackie E, Etchegoin PG (2008) J Phys Chem C 112:8117–8121

    Article  CAS  Google Scholar 

  29. Mc Farland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  30. Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097

    Article  CAS  Google Scholar 

  31. Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419

    Article  CAS  Google Scholar 

  32. Guillot N, de la Chapelle ML (2012) J Quant Spectrosc Radiat Transf 113:2321–2333

    Article  CAS  Google Scholar 

  33. Guillot N, Lamy de la Chapelle M (2012) J Nanophotonics 6:64506

    Article  CAS  Google Scholar 

  34. Gillibert N, Huang JQ, Zhang Y, Fu WL, de la Chapelle ML (2018) Trends Anal Chem 105:185–190

    Article  CAS  Google Scholar 

  35. Gillibert N, Huang JQ, Zhang Y, Fu WL, de la Chapelle ML (2018) Trends Anal Chem 105:166–172

    Article  CAS  Google Scholar 

  36. Oskooi A, Johnson S (2011) Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media. J Comp Phys 230:2369–2377

    Article  CAS  Google Scholar 

  37. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partly performed at the “Centrale de Proximité en Nanotechnologies de Paris Nord” (CPN2, 99 Avenue Jean-Baptiste Clément 93430 Villetaneuse, France) of the Université Paris 13.

Funding

This work is supported by the grant PIRANEX project (ANR-12-NANO-0016), the Louise project (ANR-15-CE04-0001), and the Nanobiosensor project (ANR-15-CE29-0026) from the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lamy de la Chapelle.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 813 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lequeux, M., Mele, D., Venugopalan, P. et al. Plasmonic Properties of Gold Nanostructures on Gold Film. Plasmonics 15, 1653–1660 (2020). https://doi.org/10.1007/s11468-020-01185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01185-9

Keywords

  • Plasmonics
  • Gold thin film
  • Grating
  • Gold nanostructures