Skip to main content

Advertisement

Log in

Graphene Hybrid Surface Plasmon Waveguide with Low Loss Transmission

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a novel graphene hybrid surface plasmon waveguide structure is designed. Based on the finite element method, the mode characteristics, the quality factor, and the gain threshold of the waveguide structure are analyzed. The results show that the optical field constraint of the designed waveguide can reach a better level of deep sub-wavelength under the optimal parameters of 1550-nm working wavelength. The structure is applied to a laser, and the high quality factor, the low energy loss, the low threshold limit, and the ultra-small effective mode field area are obtained by adjusting waveguide design parameters. Compared with the common waveguide structure, this structure has stronger optical field limiting ability and microcavity binding ability. It provides theoretical and technical support for the development of new high-efficiency nano-laser devices and is expected to be applied to fields such as on-chip interconnects, photonic integrated circuits, optical storage, and optical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yongqi L (2011) Dielectric grating excitation of spp and its waveguide [D]. Beijing University of Chemical Technology. 罗永其. SPP的电介质光栅激发及其波导[D]. 北京化工大学, 2011

  2. Zhiquan L, Gao X, Liyong N (2012) Propagation properties of a surface plasmon polariton directional coupler. Chin J Lasers 39(10):1010001

    Article  Google Scholar 

  3. Gui C, Wang J (2015) Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area. Sci Rep 5:11457

    Article  PubMed Central  Google Scholar 

  4. Ma H, Liu Z, Jiang P (2011) Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Opt Express 19(14):13105–13117

    Article  Google Scholar 

  5. Yang T, Zhang H, Zhao C, Akhmadaliev S, Chen F (2015) Bi2se3q-switched nd:yag ceramic waveguide laser. Opt Lett 40(4):637–640

    Article  CAS  Google Scholar 

  6. Tan Y, Guo Z, Ma L, Zhang H, Akhmadaliev S, Zhou S, Chen F (2016) Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Opt Express 24(3):2858

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed Central  Google Scholar 

  8. Geim AK, Novoselov KS (2009) The rise of graphene. Nat Mater 6:11–19

    Google Scholar 

  9. Neto A H C , Guinea F , Peres N M R , et al. The electronic properties of graphene. 2007

    Google Scholar 

  10. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  CAS  Google Scholar 

  11. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  Google Scholar 

  12. Vakil A, Engheta N (2011) Transformation Optics Using Graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  13. Xu JH, Lu BW, Zhu W et al (2012) Efficient manipulation of surface plasmon polariton waves in graphene. Appl Phys Lett 100(24):243110

    Article  CAS  Google Scholar 

  14. (2018) Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength. Chin Phys B 27(08):46–51

  15. Zhang J, Cai L, Bai W, Xu Y, Song G (2011) Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Opt Lett 36(12):2312–2314

    Article  CAS  Google Scholar 

  16. Stauber T, Peres NMR, Geim AK (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78(8):085432

    Article  CAS  Google Scholar 

  17. Hugonin L (2012) Design of an integrated III-V semiconductor single-plasmon source[C]// Lasers & Electro-optics. IEEE

  18. Li ZQ, Piao RQ, Zhao JJ et al (2015) A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale. Chin Phys B 24(7):441–447

    Google Scholar 

  19. Hong C, Michel J, Kimerling L et al (2007) Horizontal single and multiple slot waveguides: optical transmission at λ=1550 nm. Opt Express 15(26):17967–17972

    Article  Google Scholar 

  20. Zhiquan L, Tao P, Ming Z et al (2016) Nanolaser based on hybrid surface plasmon waveguide. China Laser 43(10)

  21. Bian Y, Zheng Z, Liu Y, Zhu J, Zhou T (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid Plasmonic waveguides. IEEE Photon Technol Lett 23(13):884–886

    Article  CAS  Google Scholar 

  22. Kuzmin DA, Bychkov IV, Shavrov VG, Kotov LN (2016) Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies. Sci Rep 6:26915

    Article  CAS  PubMed Central  Google Scholar 

  23. Wan P, Yang C (2017) Characteristics of surface plasma waves and surface plasma waveguides in graphene TE modes. Chin J Optics 11:298–305 万鹏, 杨翠红. 石墨烯TE模表面等离子体波和表面等离子体波导的特性. 光学学报, 2017(11):298–305

    Google Scholar 

  24. Zhu B, Ren G, Yang Y, Gao Y, Wu B, Lian Y, Wang J, Jian S (2015) Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics 10(4):839–845

    Article  CAS  Google Scholar 

  25. Wang C, Wu G-z, Pei Z et al (2014) Mode properties of hybrid plasmonic waveguide with an metal nano-rib. Acta Photonica Sin

Download references

Funding

Natural Science Foundation of Hebei Province grant in China (No. F2017203316); Colleges and Universities in Hebei Province Science and Technology Research Project in China (No. QN2019061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, S., Li, Z. et al. Graphene Hybrid Surface Plasmon Waveguide with Low Loss Transmission. Plasmonics 15, 1621–1627 (2020). https://doi.org/10.1007/s11468-020-01181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01181-z

Keywords

Navigation