Introducing New Conjugated Quantum Dots for Photothermal Therapy in Biological Applications

Abstract

It is well-known that near-infrared (NIR) light sources are appropriate to ablate benign tumor irreversibly using heat treatment even in deep tissues. The laser light penetration into the skin in these wavelengths is deep (3–5 mm). Applying new stable materials for emitting NIR wavelengths in tumor positions can help cancer treatment. In this paper, synthesis of the conjugated core-multishell Ag/SiO2/Ag and Au/SiO2/Au quantum dots (QDs) with indocyanine green (ICG) is done and their theoretical and experimental absorptions and emissions in the NIR region are investigated. Thus, heat generation (high-resolution medical imaging capabilities) and emission enhancement are explained and described based on the FRET model for the proposed core-multishell QDs and it is shown that Ag/SiO2/Ag with ICG presents 4 times higher emission rate versus ICG alone in NIR region. Also, because of the plasmon hybridization and also resonance light penetration enhancement, the temperature in tissues increases that is useful for photothermal therapy and NIR high-resolution medical imaging for deep tissues. As an alternative application, these nanoparticles with amazing features are used as a heat source in cancer treatment for shallow and deep tissues. Finally, it is shown that Ag/SiO2/Ag QDs are the best solution for this purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Zheng X, Zhou F, Wu B, Chen WR, Xing D (2012) Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm 9:514–522

    CAS  Google Scholar 

  2. 2.

    Nolsoe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE, Olldag ES, Andersen PH, Karstrup S, Lorentzen T (1993) Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 187:333–337

    CAS  Google Scholar 

  3. 3.

    Amin Z, Donald JJ, Masters A, Kant R, Steger AC, Bown SG, Lees WR (1993) Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology 187:339–347

    CAS  Google Scholar 

  4. 4.

    Anghileri LJ, Robert J (1986) Hyperthermia in cancer treatment. CRC Press, Boca Raton, pp 59–78

    Google Scholar 

  5. 5.

    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    CAS  Google Scholar 

  6. 6.

    J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment. small. 6, 811–817(2010).

  7. 7.

    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    CAS  Google Scholar 

  8. 8.

    Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66

    CAS  Google Scholar 

  9. 9.

    Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    CAS  Google Scholar 

  10. 10.

    Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003

    CAS  Google Scholar 

  11. 11.

    Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by the photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    CAS  Google Scholar 

  12. 12.

    Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009

    Google Scholar 

  13. 13.

    Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    CAS  Google Scholar 

  14. 14.

    Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D'Agostino RJ, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 106:12897–12902

    CAS  Google Scholar 

  15. 15.

    Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka AS, Ito O, Iijima S, Yudasaka M (2008) Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci U S A 105:14773–14778

    CAS  Google Scholar 

  16. 16.

    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Natl Nanotechnol 2:751–760

    CAS  Google Scholar 

  17. 17.

    Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084

    CAS  Google Scholar 

  18. 18.

    Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res 69:1268–1272

    CAS  Google Scholar 

  19. 19.

    Kim TH, Chen Y, Mount CW, Gombotz WR, Li X, Pun SH (2010) Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging. Pharm Res 27:1900–1913

    CAS  Google Scholar 

  20. 20.

    Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19:215–222

    CAS  Google Scholar 

  21. 21.

    Miki K, Oride K, Inoue S, Kuramochi Y, Nayak RR, Matsuoka H, Harada H, Hiraoka M, Ohe K (2010) Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 31:934–942

    CAS  Google Scholar 

  22. 22.

    Yaseen MA, Yu J, Wong MS, Anvari B (2007) Laser-induced heating of dextran-coated mesocapsules containing indocyanine green. Biotechnol Prog 23:1431–1440

    CAS  Google Scholar 

  23. 23.

    Yu J, Yaseen MA, Anvari B, Wong MS (2007) Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chem Mater 19:1277–1284

    CAS  Google Scholar 

  24. 24.

    Yu J, Javier D, Yaseen MA, Nitin N, Richards-Kortum R, Anvari B, Wong MS (2010) Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc 132:1929–1938

    CAS  Google Scholar 

  25. 25.

    Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J (1998) Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 39:1286–1290

    CAS  Google Scholar 

  26. 26.

    Landsman ML, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

    CAS  Google Scholar 

  27. 27.

    Saxena V, Sadoqi M, Shao J (2003) Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci 92:2090–2097

    CAS  Google Scholar 

  28. 28.

    Dolatyari M, Rostami A, Torabi P, Klein A (2017) Fluorescence resonance energy transfer between an anti-EGFR antibody and Bi2Se3/SiO2, ZnS/SiO2, and ZnSe/SiO2 nanomaterials for biosensor purposes. Z Anorg Allg Chem 643:1564–1571

    CAS  Google Scholar 

  29. 29.

    Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245

    CAS  Google Scholar 

  30. 30.

    Absalan H, SalmanOgli A, Rostami A, Maghoul A (2012) Simulation and investigation of quantum dot effects as internal heat-generator source in the breast tumor site. J Therm Biol 37:490–495

    Google Scholar 

  31. 31.

    Liu C, Lv J, Liu Z, Zheng S, Liu Q, Sun T, Mu H, Chu PK (2016) Theoretical assessment of localized surface plasmon resonance properties of au-interlayer-Ag multilayered Nanoshells. Plasmonics 11:1589–1595

    CAS  Google Scholar 

  32. 32.

    Asselin J, Viger ML, Boudreau D (2014) Metal-enhanced fluorescence and FRET in multilayer core-shell nanoparticles. Adv Chem 812313:1–16

    Google Scholar 

  33. 33.

    Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    CAS  Google Scholar 

  34. 34.

    Wang AX, Kong X (2015) Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 8:3024–3052

    CAS  Google Scholar 

  35. 35.

    Romero I, Aizpurua J, Bryant GW, de Abajo FJG (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 16:9988–9999

    Google Scholar 

  36. 36.

    Li K, Hogan NJ, Kale M, Halas NJ, Nordlander P, Christopher P (2017) Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett 17:3710–3717

    CAS  Google Scholar 

  37. 37.

    Jackson JD (1999) Classical electrodynamics. John Wiley

  38. 38.

    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Absorption and scattering of light by small particles. ISBN 0–471–29340-7. Wiley-VCH, p 544

  39. 39.

    Newton RG (2013) Scattering theory of waves and particles. Springer Science & Business Media

  40. 40.

    Dolatyari M, Jaafari A, Rostami A, Klein A (2019) Transparent display using a quasi-array of Si-SiO2 core-shell nanoparticles. Sci Rep 9:2293

    Google Scholar 

  41. 41.

    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295–317

    CAS  Google Scholar 

  42. 42.

    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Google Scholar 

  43. 43.

    Novotny L, Pohl D, Hecht B (1995) Scanning near-field optical probe with ultrasmall spot size. Opt Lett 20:970–972

    CAS  Google Scholar 

  44. 44.

    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference-time-domain method. Artech House

  45. 45.

    Barber PW, Hill SC (1990) Light scattering by particles: computational methods. World Sci 2

  46. 46.

    Mackowski DW, Mishchenko MI (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 13:2266–2278

    Google Scholar 

  47. 47.

    Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    CAS  Google Scholar 

  48. 48.

    Lidke DS, Nagy P, Jovin TM, Arndt-Jovin DJ (2007) Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors. Methods Mol Biol 374:69–79

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Iran Nanotechnology Innovation Council.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Rostami or I. S. Amiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolatyari, M., Aghdam, F.A., Rostami, G. et al. Introducing New Conjugated Quantum Dots for Photothermal Therapy in Biological Applications. Plasmonics 15, 1565–1575 (2020). https://doi.org/10.1007/s11468-020-01171-1

Download citation

Keywords

  • Quantum dots
  • FRET
  • Photothermal therapy
  • Imaging
  • Cancer detection