Skip to main content

Microwave-Assisted Growth of Silver Nanoparticle Films with Tunable Plasmon Properties and Asymmetrical Particle Geometry for Applications as Radiation Sensors

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report a simple and fast microwave-assisted method to grow silver nanoparticle films with tunable plasmon resonance band. Microwaving time controls nucleation and growth as well as particle agglomeration, cluster formation, particle morphology, and the plasmonic properties. Films produced with times shorter than 30 s presented a single well-defined plasmon resonance band (~ 400 nm), whereas films produced with times longer than 40 s presented higher wavelength resonances modes (> 500 nm). Plasmon band position and intensity can be easily tuned by controlling microwaving time and power. SEM and AFM images suggested the growth of asymmetrical silver nanoparticles. Simulated extinction spectra considering particles as spheres, hemispheres, and spherical caps were performed. The films were employed to enhance the sensitivity of ionizing radiation detectors assessed by optically stimulated luminescence (OSL) via plasmon-enhanced luminescence. By tuning the plasmon resonance band to overlap with the OSL stimulation (530 nm), luminescence enhancements of greater than 100-fold were obtained, demonstrating the importance of tuning the plasmon resonance band to maximize the OSL intensity and detector sensitivity. This versatile method to produce silver nanoparticle films with tunable plasmonic properties is a promising platform for developing small-sized radiation detectors and advanced sensing technologies.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zhang W, Xiong H, Chen M et al (2017) Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO 2 for ultrasensitive detection of fumonisin B 1. Biosens Bioelectron 96:55–61. https://doi.org/10.1016/j.bios.2017.04.035

    Article  CAS  Google Scholar 

  2. 2.

    Demory B, Hill TA, Teng C-H et al (2015) Plasmonic enhancement of single photon emission from a site-controlled quantum dot. ACS Photonics 2:1065–1070. https://doi.org/10.1021/acsphotonics.5b00086

    Article  CAS  Google Scholar 

  3. 3.

    Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194. https://doi.org/10.1016/j.ab.2004.11.026

    Article  CAS  Google Scholar 

  4. 4.

    Lakowicz JR (2008) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33. https://doi.org/10.1007/s11468-005-9002-3

    Article  CAS  Google Scholar 

  5. 5.

    Island S, Intensity F, Lakowicz JR et al (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Radiative Decay Eng 277:261–277. https://doi.org/10.1006/abio.2001.5503

    Article  CAS  Google Scholar 

  6. 6.

    Park J-E, Kim J, Nam J-M (2017) Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem Sci 8:4696–4704. https://doi.org/10.1039/C7SC01441D

    Article  CAS  Google Scholar 

  7. 7.

    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B. https://doi.org/10.1021/JP002435E

  8. 8.

    Yeshchenko OA, Kondratenko SV, Kozachenko VV (2012) Surface plasmon enhanced photoluminescence from fullerene C60 film on Au nanoparticles array: resonant dependence on excitation frequency. J Appl Phys 111:124327. https://doi.org/10.1063/1.4731228

    Article  CAS  Google Scholar 

  9. 9.

    Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105. https://doi.org/10.1021/la201938u

    Article  CAS  Google Scholar 

  10. 10.

    Garcia-Leis A, Rivera-Arreba I, Sanchez-Cortes S (2017) Morphological tuning of plasmonic silver nanostars by controlling the nanoparticle growth mechanism: application in the SERS detection of the amyloid marker Congo Red. Colloids Surfaces A Physicochem Eng Asp 535:49–60. https://doi.org/10.1016/j.colsurfa.2017.09.013

    Article  CAS  Google Scholar 

  11. 11.

    Kuttner C, Mayer M, Dulle M, Moscoso A, López-Romero JM, Förster S, Fery A, Pérez-Juste J, Contreras-Cáceres R (2018) Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Appl Mater Interfaces 10:11152–11163. https://doi.org/10.1021/acsami.7b19081

    Article  CAS  Google Scholar 

  12. 12.

    Kumbhar AS, Kinnan MK, Chumanov G (2005) Multipole plasmon resonances of submicron silver particles. J Am Chem Soc 127:12444–12445. https://doi.org/10.1021/ja053242d

    Article  CAS  Google Scholar 

  13. 13.

    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217. https://doi.org/10.1039/B514191E

    Article  CAS  Google Scholar 

  14. 14.

    Sanger K, Durucan O, Wu K et al (2017) Large-scale, lithography-free production of transparent nanostructured surface for dual-functional electrochemical and SERS sensing. ACS Sensors 2:1869–1875. https://doi.org/10.1021/acssensors.7b00783

    Article  CAS  Google Scholar 

  15. 15.

    Gisbert Quilis N, Lequeux M, Venugopalan P, Khan I, Knoll W, Boujday S, Lamy de la Chapelle M, Dostalek J (2018) Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 10:10268–10276. https://doi.org/10.1039/C7NR08905H

    Article  CAS  Google Scholar 

  16. 16.

    Zhang X-Y, Shan F, Zhou H-L et al (2018) Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. J Mater Chem C 6:989–999. https://doi.org/10.1039/C7TC04486K

    Article  CAS  Google Scholar 

  17. 17.

    Zhu S-Q, Zhang T, Guo X-L, Wang QL, Liu X, Zhang XY (2012) Gold nanoparticle thin films fabricated by electrophoretic deposition method for highly sensitive SERS application. Nanoscale Res Lett 7:613. https://doi.org/10.1186/1556-276X-7-613

    Article  CAS  Google Scholar 

  18. 18.

    Mahajan S, Hutter T, Steiner U, Goldberg Oppenheimer P (2013) Tunable microstructured surface-enhanced Raman scattering substrates via electrohydrodynamic lithography. J Phys Chem Lett 4:4153–4159. https://doi.org/10.1021/jz4018688

    Article  CAS  Google Scholar 

  19. 19.

    Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR (2012) Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492:86–89. https://doi.org/10.1038/nature11615

    Article  CAS  Google Scholar 

  20. 20.

    Bush B, Xu G, Carraro C, Maboudian R (2006) Layer-by-layer self-assembled conductive thin films for MEMS applications. Sensors Actuators A Phys 126:194–200. https://doi.org/10.1016/J.SNA.2005.10.038

    Article  CAS  Google Scholar 

  21. 21.

    Guidelli EJ, Ramos AP, Baffa O (2016) Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications. Sensors Actuators B Chem 224:248–255. https://doi.org/10.1016/j.snb.2015.10.024

    Article  CAS  Google Scholar 

  22. 22.

    Chen Y, Dong B, Zhou W (2010) Surface plasmon resonance biosensor modified with multilayer silver nanoparticles films. Appl Surf Sci 257:1021–1026. https://doi.org/10.1016/j.apsusc.2010.08.011

    Article  CAS  Google Scholar 

  23. 23.

    Gandra N, Portz C, Tian L, Tang R, Xu B, Achilefu S, Singamaneni S (2014) Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angew Chem Int Ed Eng 53:866–870. https://doi.org/10.1002/anie.201308516

    Article  CAS  Google Scholar 

  24. 24.

    Ghodselahi T, Neishaboorynejad T, Arsalani S (2015) Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling. Appl Surf Sci 343:194–201. https://doi.org/10.1016/J.APSUSC.2015.01.219

    Article  CAS  Google Scholar 

  25. 25.

    Ghodselahi T, Arsalani S, Neishaboorynejad T (2014) Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance. Appl Surf Sci 301:230–234. https://doi.org/10.1016/J.APSUSC.2014.02.050

    Article  CAS  Google Scholar 

  26. 26.

    Rivero PJ, Goicoechea J, Urrutia A, Matias IR, Arregui FJ (2013) Multicolor layer-by-layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles. Nanoscale Res Lett 8:438. https://doi.org/10.1186/1556-276X-8-438

    Article  CAS  Google Scholar 

  27. 27.

    Guidelli EJ, Ramos AP, Baffa O (2016) Unconventional increase in non-radiative transitions in plasmon-enhanced luminescence: a distance-dependent coupling. Sci Rep 6:36691. https://doi.org/10.1038/srep36691

    Article  CAS  Google Scholar 

  28. 28.

    Zhang X-Y, Hu A, Zhang T et al (2011) Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5:9082–9092. https://doi.org/10.1021/nn203336m

    Article  CAS  Google Scholar 

  29. 29.

    Ahmed MF, Shrestha N, Ahmad S et al (2017) Demonstration of 2D dosimetry using Al 2 O 3 optically stimulated luminescence films for therapeutic megavoltage x-ray and ion beams. Radiat Meas. https://doi.org/10.1016/j.radmeas.2017.04.010

  30. 30.

    de F Nascimento L, Vanhavere F, Souza R, Verellen D (2016) Al2O3:C optically stimulated luminescence droplets: characterization and applications in medical beams. Radiat Meas 94:41–48. https://doi.org/10.1016/j.radmeas.2016.09.003

    Article  CAS  Google Scholar 

  31. 31.

    Nascimento LF, Vanhavere F, Boogers E et al (2014) Medical dosimetry using a RL/OSL prototype. Radiat Meas 71:359–363. https://doi.org/10.1016/j.radmeas.2014.05.028

    Article  CAS  Google Scholar 

  32. 32.

    Vrigneaud J-M, Courteau A, Ranouil J, Morgand L, Raguin O, Walker P, Oudot A, Collin B, Brunotte F (2013) Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging. Med Phys 40:122102. https://doi.org/10.1118/1.4829499

    Article  CAS  Google Scholar 

  33. 33.

    Yarahmadi M, Wegener S, Sauer OA (2017) Energy and field size dependence of a silicon diode designed for small-field dosimetry. Med Phys 44:1958–1964. https://doi.org/10.1002/mp.12195

    Article  CAS  Google Scholar 

  34. 34.

    Shukaili KA, Petasecca M, Newall M et al (2017) A 2D silicon detector array for quality assurance in small field dosimetry: DUO. Med Phys 44:628–636. https://doi.org/10.1002/mp.12060

    Article  CAS  Google Scholar 

  35. 35.

    Calcina CSG, de Oliveira LN, de Almeida CE, de Almeida A (2007) Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber. Phys Med Biol 52:1431–1439. https://doi.org/10.1088/0031-9155/52/5/014

    Article  Google Scholar 

  36. 36.

    Chen F, Guzmán Calcina CS, de Almeida A et al (2007) Small radiation field dosimetry with 2-methylalanine miniature dosimeters at K-band electron paramagnetic resonance. Radiat Meas 42:1213–1216. https://doi.org/10.1016/j.radmeas.2007.05.014

    Article  CAS  Google Scholar 

  37. 37.

    Abrego FC, Calcina CSG, de Almeida A, de Almeida CE, Baffa O (2007) Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-band EPR minidosimeter. Med Phys 34:1573–1582. https://doi.org/10.1118/1.2717414

    Article  CAS  Google Scholar 

  38. 38.

    Chen F, Graeff CFO, Baffa O (2007) Response of l-alanine and 2-methylalanine minidosimeters for K-band (24GHz) EPR dosimetry. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 264:277–281. https://doi.org/10.1016/j.nimb.2007.08.097

    Article  CAS  Google Scholar 

  39. 39.

    Oh K, Han M, Kim K et al (2016) Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy. J Instrum 11:C02040–C02040. https://doi.org/10.1088/1748-0221/11/02/C02040

    Article  CAS  Google Scholar 

  40. 40.

    Marinelli M, Prestopino G, Verona C, Verona-Rinati G Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume; experimental determination of the PTW 60019 microdiamond dosimeter active area and volume. Med Phys. https://doi.org/10.1118/1.4961402

  41. 41.

    García-Garduño OA, Rodríguez-Ponce M, Gamboa-deBuen I, Rodríguez-Villafuerte M, Galván de la Cruz OO, Rivera-Montalvo T (2014) Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery. Med Phys 41:092101. https://doi.org/10.1118/1.4892176

    Article  CAS  Google Scholar 

  42. 42.

    dos Santos TC, Neves-Junior WFP, Gonçalves JAC et al (2014) Characterization of miniature RAD-HARD silicon diodes as dosimeters for small fields of photon beams used in radiotherapy. Radiat Meas 71:396–401. https://doi.org/10.1016/j.radmeas.2014.08.002

    Article  CAS  Google Scholar 

  43. 43.

    Guidelli EJ, Lignos I, Yoo J, Lusardi M, Bawendi M; Baffa O, Jensen K (2018) Mechanistic insights and controlled synthesis of radioluminescent ZnSe quantum dots using a microfluidic reactor. Submitt to Chem Mater

  44. 44.

    Guidelli EJ, Baffa O (2014) Potential application of metal nanoparticles for dosimetric systems: concepts and perspectives. In: AIP Conference Proceedings

  45. 45.

    Guidelli EJ, Lima IS, Baffa O (2018) Monosodium glutamate for accidental, retrospective, and medical dosimetry using electron spin resonance. Radiat Environ Biophys 1:3. https://doi.org/10.1007/s00411-018-0756-3

    Article  Google Scholar 

  46. 46.

    Souza LF, Silva AMB, Antonio PL et al (2017) Dosimetric properties of MgB4O7:Dy,Li and MgB4O7:Ce,Li for optically stimulated luminescence applications. Radiat Meas. https://doi.org/10.1016/j.radmeas.2017.02.009

  47. 47.

    Yanagida T, Fukuda K, Okada G, Watanabe K, Kawaguchi N (2017) Ionizing radiation induced luminescence properties of Mn-doped LiCa (Al,Ga)F6. J Mater Sci Mater Electron 28:6982–6988. https://doi.org/10.1007/s10854-016-5917-z

    Article  CAS  Google Scholar 

  48. 48.

    Zúñiga-Rivera NJ, Salas-Castillo P, Chernov V et al (2017) Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Opt Mater (Amst) 67:91–97. https://doi.org/10.1016/j.optmat.2017.03.040

    Article  CAS  Google Scholar 

  49. 49.

    GUO J, TANG Q, ZHANG C et al (2017) Optically stimulated luminescence (OSL) of LiMgPO 4 :Tm,Tb phosphor. J Rare Earths 35:525–529. https://doi.org/10.1016/S1002-0721(17)60943-8

    Article  CAS  Google Scholar 

  50. 50.

    Nyirenda AN, Chithambo ML (2017) The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al 2 O 3 :C. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 397:92–100. https://doi.org/10.1016/j.nimb.2017.02.077

    Article  CAS  Google Scholar 

  51. 51.

    Guidelli ÉJ, Guerra EM, Mulato M (2012) Vanadium and titanium mixed oxide films: synthesis, characterization and application as ion sensor. J Electrochem Soc 159:J217. https://doi.org/10.1149/2.053206jes

    Article  CAS  Google Scholar 

  52. 52.

    Guidelli EJ, Guerra EM, Mulato M (2011) Ion sensing properties of vanadium/tungsten mixed oxides. Mater Chem Phys 125:833–837. https://doi.org/10.1016/j.matchemphys.2010.09.040

    Article  CAS  Google Scholar 

  53. 53.

    Guidelli EJ, Ramos AP, Baffa O (2015) Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties. Nanotechnology 27:015503. https://doi.org/10.1088/0957-4484/27/1/015503

    Article  CAS  Google Scholar 

  54. 54.

    Guidelli EJ, Baffa O, Clarke DR (2015) Enhanced UV emission from silver/ZnO and gold/ZnO Core-Shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Sci Rep 5:14004. https://doi.org/10.1038/srep14004

    Article  CAS  Google Scholar 

  55. 55.

    Liu S-Y, Huang L, Li J-F et al (2013) Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. J Phys Chem C 117:10636–10642. https://doi.org/10.1021/jp4001626

    Article  CAS  Google Scholar 

  56. 56.

    Balamurugan B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87:143105. https://doi.org/10.1063/1.2077834

    Article  CAS  Google Scholar 

  57. 57.

    Balamurugan B, Maruyama T (2007) Size-modified d bands and associated interband absorption of Ag nanoparticles. J Appl Phys 102:034306. https://doi.org/10.1063/1.2767837

    Article  CAS  Google Scholar 

  58. 58.

    Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15:035005. https://doi.org/10.1088/2040-8978/15/3/035005

    Article  CAS  Google Scholar 

  59. 59.

    Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817. https://doi.org/10.1063/1.122903

    Article  CAS  Google Scholar 

  60. 60.

    Rubin M (1985) Optical properties of soda lime silica glasses. Sol Energy Mater 12:275–288. https://doi.org/10.1016/0165-1633(85)90052-8

    Article  CAS  Google Scholar 

  61. 61.

    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283. https://doi.org/10.1364/ao.37.005271

    Article  Google Scholar 

  62. 62.

    Gharibshahi L, Saion E, Gharibshahi E et al (2017) Influence of poly (vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method. PLoS One 12:e0186094. https://doi.org/10.1371/journal.pone.0186094

    Article  CAS  Google Scholar 

  63. 63.

    Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5:85–97. https://doi.org/10.1007/s11468-009-9120-4

    Article  CAS  Google Scholar 

  64. 64.

    Gołek F, Mazur P, Ryszka Z, Zuber S (2014) AFM image artifacts. In: Applied Surface Science. Elsevier B.V., pp 11–19

  65. 65.

    Canale C, Torre B, Ricci D, Braga PC (2011) Recognizing and avoiding artifacts in atomic force microscopy imaging. In: Methods in molecular biology. Humana Press Inc., pp 31–43

  66. 66.

    Attanayake T, Premaratne M, Govind Agrawal P (2015) Characterizing the optical response of symmetric hemispherical nano-dimers. Plasmonics 10:1453–1466. https://doi.org/10.1007/s11468-015-9946-x

    Article  CAS  Google Scholar 

  67. 67.

    Topal CÖ, Jaradat HM, Karumuri S et al (2017) Plasmon resonances in nanohemisphere monolayers. J Phys Chem C 121:23599–23608. https://doi.org/10.1021/acs.jpcc.7b05934

    Article  CAS  Google Scholar 

  68. 68.

    Kumbhar AS, Kinnan MK, Chumanov G (2005) Multipole plasmon resonances of submicron silver particles. J Am Chem Soc 127:12444–12445. https://doi.org/10.1021/JA053242D

    Article  CAS  Google Scholar 

  69. 69.

    Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin films of AuO/SiO2 particles. J Phys Chem B 105:3441–3452. https://doi.org/10.1021/jp003500n

    Article  CAS  Google Scholar 

  70. 70.

    Fan JA, Wu C, Bao K et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138. https://doi.org/10.1126/science.1187949

    Article  CAS  Google Scholar 

  71. 71.

    Camacho QA, Munoz HG, Rubio OJ et al (1988) Dosimetric properties of KCl:Eu. J Mater Sci Lett 7:437–440

    Article  Google Scholar 

  72. 72.

    Meléndrez R, Pérez-Salas R, Pashchenko LP et al (1996) Dosimetric properties of KCl:Eu2+ under α, β, γ, x ray, and ultraviolet irradiation. Appl Phys Lett. https://doi.org/10.1063/1.116516

  73. 73.

    Li HH, Xiao Z, Hansel R, Knutson N, Yang D (2013) Performance of KCl:Eu 2+ storage phosphor dosimeters for low-dose measurements. Phys Med Biol 58:4357–4366. https://doi.org/10.1088/0031-9155/58/12/4357

    Article  CAS  Google Scholar 

  74. 74.

    de Cárcer IA, Dántoni HL, Barboza-Flores M et al (2009) KCl: Eu2+ as a solar UV-C radiation dosimeter. Optically stimulated luminescence and thermoluminescence analyses. J Rare Earths 27:579–583. https://doi.org/10.1016/S1002-0721(08)60292-6

    Article  Google Scholar 

  75. 75.

    Kittel C (1953) Introduction to solid state physics. Am J Phys 21:650. https://doi.org/10.1119/1.1933590

    Article  Google Scholar 

  76. 76.

    Agarwal M, Garg SK, Asokan K et al (2017) Facile synthesis of KCl:Sm 3+ nanophosphor as a new OSL dosimetric material achieved through charge transfer between the defect states. RSC Adv 7:13836–13845. https://doi.org/10.1039/C6RA25237K

    Article  CAS  Google Scholar 

  77. 77.

    Xiao Z, Mazur T, Driewer J, Li H (2015) SU-E-T-476: improving KCl:Eu2+ dosimeter sensitivity: the role of oxygen. Med Phys 42:3444–3444. https://doi.org/10.1118/1.4924838

    Article  Google Scholar 

  78. 78.

    Hansel RA, Xiao Z, Hu Y, Green O, Yang D, Harold Li H (2013) The role of activator concentration and precipitate formation on optical and dosimetric properties of KCl:Eu 2+ storage phosphor detectors. Med Phys 40:092104. https://doi.org/10.1118/1.4817522

    Article  CAS  Google Scholar 

  79. 79.

    Rezaee Ebrahim Saraee K, Hosseini SA, Faripour H et al (2014) Thermoluminescence behavior of KClXBr1−X: in mixed crystals exposed to gamma radiation. J Cryst Growth 402:161–168. https://doi.org/10.1016/j.jcrysgro.2014.04.017

    Article  CAS  Google Scholar 

  80. 80.

    Li HH, Driewer JP, Han Z, Low DA, Yang D, Xiao Z (2014) Two-dimensional high spatial-resolution dosimeter using europium doped potassium chloride: a feasibility study. Phys Med Biol 59:1899–1909. https://doi.org/10.1088/0031-9155/59/8/1899

    Article  CAS  Google Scholar 

  81. 81.

    Guidelli ÉJ, Kinoshita A, Ramos AP, Baffa O (2013) Silver nanoparticles delivery system based on natural rubber latex membranes. J Nanopart Res 15:1536. https://doi.org/10.1007/s11051-013-1536-2

    Article  CAS  Google Scholar 

  82. 82.

    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491. https://doi.org/10.1021/nl0340475

    Article  CAS  Google Scholar 

  83. 83.

    Guidelli EJ, Kinoshita A, Ramos AP, Baffa O (2013) Silver nanoparticles delivery system based on natural rubber latex membranes. J Nanopart Res 15:1536. https://doi.org/10.1007/s11051-013-1536-2

    Article  CAS  Google Scholar 

  84. 84.

    Guidelli EJ, Ramos AP, Baffa O (2014) Optically stimulated luminescence under plasmon resonance conditions enhances x-ray detection. Plasmonics 9:1049–1056. https://doi.org/10.1007/s11468-014-9713-4

    Article  CAS  Google Scholar 

  85. 85.

    Gómez DE, Teo ZQ, Altissimo M, Davis TJ, Earl S, Roberts A (2013) The dark side of plasmonics. Nano Lett 13:3722–3728. https://doi.org/10.1021/nl401656e

    Article  CAS  Google Scholar 

  86. 86.

    Peter M, Werra JFM, Friesen C, Achnitz D, Busch K, Linden S (2018) Fluorescence enhancement by a dark plasmon mode. Appl Phys B Lasers Opt 124:83. https://doi.org/10.1007/s00340-018-6953-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank L. Rocha and I. A. Borin for technical assistance and AFM imaging.

Funding

This work was supported by the Brazilian funding agencies FAPESP, CNPq (407471/2016-2 and 308604/2013-0), CAPES (EJG is a recipient of the PVE-USP-Capes Program fellowship, Finance code 001), and FAPESP 2013/07699-0.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. J. Guidelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 43763 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guidelli, E.J., Araujo, L.F., Assunção, A.C.A. et al. Microwave-Assisted Growth of Silver Nanoparticle Films with Tunable Plasmon Properties and Asymmetrical Particle Geometry for Applications as Radiation Sensors. Plasmonics 15, 1551–1564 (2020). https://doi.org/10.1007/s11468-020-01150-6

Download citation

Keywords

  • Film growth
  • Silver nanoparticles
  • Optically stimulated luminescence
  • Metal enhanced luminescence
  • Dosimetry
  • SERS