Plasmonic Effects of Dual-Metal Nanoparticle Layers for High-Performance Quantum Dot Solar Cells


To improve quantum dot solar cell performance, it is crucial to make efficient use of the available incident sunlight to ensure that the absorption is maximized. The ability of metal nanoparticles to concentrate incident sunlight via plasmon resonance can enhance the overall absorption of photovoltaic cells due to the strong confinement that results from near-field coupling or far-field scattering plasmonic effects. Therefore, to simultaneously and synergistically utilize both plasmonic effects, the placement of different plasmonic nanostructures at the appropriate locations in the device structure is also critical. Here, we introduce two different plasmonic nanoparticles, Au and Ag, to a colloidal PbS quantum dot heterojunction at the top and bottom interface of the electrodes for further improvement of the absorption in the visible and near-infrared spectral regions. The Ag nanoparticles exhibit strong scattering whereas the Au nanoparticles exhibit an intense optical effect in the wavelength region where the absorption of light of the PbS quantum dot is strongest. It is found that these dual-plasmon layers provide significantly improved short-circuit current and power conversion efficiency without any form of trade-off in terms of the fill factor and open-circuit voltage, which may result from the indirect contact between the plasmonic nanoparticles and colloidal quantum dot films.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bera D, Qian L, Tseng T-K, Holloway P (2010) Quantum dots and their multimodal applications: a review. Mater 3:2260–2345

    CAS  Article  Google Scholar 

  2. 2.

    Carey G, Abdelhady A, Ning Z, Thon S, Bakr O, Sargent E (2015) Colloidal quantum dot solar cells. Chem Rev 115:12732–12763

    CAS  Article  Google Scholar 

  3. 3.

    Kim J, Voznyy O, Zhitomirsky D, Sargent E (2013) 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25:4986–5010

    CAS  Article  Google Scholar 

  4. 4.

    Supran G, Song K, Hwang G, Correa R, Scherer J, Dauler E, Shirasaki Y, Bawendi M, Bulović V (2015) High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv Mater 27:1437–1442

    CAS  Article  Google Scholar 

  5. 5.

    Semonin O, Luther J, Beard M (2012) Quantum dots for next-generation photovoltaics. Mater Today 15:508–515

    CAS  Article  Google Scholar 

  6. 6.

    Sargent E (2012) Colloidal quantum dot solar cells. Nat Photonics 6:133–135

    CAS  Article  Google Scholar 

  7. 7.

    Chuang C-H, Brown P, Bulović V, Bawendi M (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13:796–801

    CAS  Article  Google Scholar 

  8. 8.

    McDonald S, Konstantatos G, Zhang S, Cyr P, Klem E, Levina L, Sargent E (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    CAS  Article  Google Scholar 

  9. 9.

    Liu M, Voznyy O, Sabatini R, Arquer P. de, Munir R, Balawi A, Lan X, Fan F, Walters G, Kirmani A, Hoogland S, Laquai F, Amassian A, Sargent E (2015) Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater 16:258–263

  10. 10.

    Yang Z, Fan J, Proppe A, de Arquer P, Rossouw D, Voznyy O, Lan X, Liu M, Walters G, Quintero-Bermudez R, Sun B, Hoogland S, Botton G, Kelly S, Sargent E (2017) Mixed-quantum-dot solar cells. Nat Commun 8:1325

    Article  Google Scholar 

  11. 11.

    Lan X, Voznyy O, de Arquer P, Liu M, Xu J, Proppe A, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent E (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634

    CAS  Article  Google Scholar 

  12. 12.

    Cao Y, Stavrinadis A, Lasanta T, So D, Konstantatos G (2016) The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat Energy 1:16035

    CAS  Article  Google Scholar 

  13. 13.

    Azmi R, Oh S-H, Jang S-Y (2016) High-efficiency colloidal quantum dot photovoltaic devices using chemically modified heterojunctions. ACS Energy Lett 1:100–106

    CAS  Article  Google Scholar 

  14. 14.

    Kim B-S, Hong J, Hou B, Cho Y, Sohn J, Cha S, Kim J (2016) Inorganic-ligand exchanging time effect in PbS quantum dot solar cell. Appl Phys Lett 109:063901

    Article  Google Scholar 

  15. 15.

    Hong J, Hou B, Lim J, Pak S, Kim B-S, Cho Y, Lee J, Lee Y-W, Giraud P, Lee S, Park J, Morris S, Snaith H, Sohn J, Cha S, Kim J (2016) Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation. J Mater Chem A 4:18769–18775

    CAS  Article  Google Scholar 

  16. 16.

    Ren Z, Kuang Z, Zhang L, Sun J, Yi X, Pan Z, Zhong X, Hu J, Xia A, Wang J (2017) Enhancing electron and hole extractions for efficient PbS quantum dot solar cells. Solar RRL 1:1700176

    Article  Google Scholar 

  17. 17.

    Wang H, Kubo T, Nakazaki J, Segawa H (2017) Solution-processed short-wave infrared PbS colloidal quantum dot/ZnO nanowire solar cells giving high open circuit voltage. ACS Energy Lett 2:2110–2117

    CAS  Article  Google Scholar 

  18. 18.

    Cho Y, Giraud P, Hou B, Lee Y, Hong J, Lee S, Pak S, Lee J, Jang J, Morris S, Sohn J, Cha S, Kim J (2018) Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect. Adv Energy Mater 8:1700809

    Article  Google Scholar 

  19. 19.

    Kim Y, Bicanic K, Tan H, Ouellette O, Sutherland B, de Arquer P, Jo J, Liu M, Sun B, Liu M, Hoogland S, Sargent E (2017) Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Lett 17:2349–2353

    CAS  Article  Google Scholar 

  20. 20.

    Rekemeyer P, Chuang C-H, Bawendi M, Gradecak S (2017) Minority carrier transport in lead sulfide quantum dot photovoltaics. Nano Lett 17:6221–6227

    CAS  Article  Google Scholar 

  21. 21.

    Cho Y, Hou B, Lim J, Lee S, Pak S, Hong J, Giraud P, Jang A-R, Lee Y-W, Lee J, Jang J, Snaith H, Morris S, Sohn J, Cha S, Kim J (2018) Balancing charge carrier transport in a quantum dot P-N junction toward hysteresis-free high-performance solar cells. ACS Energy Lett 3:1036–1043

    CAS  Article  Google Scholar 

  22. 22.

    Lu L, Luo Z, Xu T, Yu L (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:59–64

    CAS  Article  Google Scholar 

  23. 23.

    Peng S, McMahon J, Schatz G, Gray S, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. Proc Natl Acad Sci 107:14530–14534

    CAS  Article  Google Scholar 

  24. 24.

    Guo Q, Zhang C, Hu X (2016) A spiral plasmonic lens with directional excitation of surface plasmons. Sci Rep 6:32345

    CAS  Article  Google Scholar 

  25. 25.

    Zhao F, Zhang C, Chang H, Hu X (2014) Design of plasmonic perfect absorbers for quantum-well infrared photodetection. Plasmonics 9:1397

    CAS  Article  Google Scholar 

  26. 26.

    Sharma M, Pudasaini P, Ruiz-Zepeda F, Vinogradova E, Ayon A (2014) Plasmonic effects of Au/Ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl Mater Interfaces 6:15472–15479

    CAS  Article  Google Scholar 

  27. 27.

    Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146

    CAS  Article  Google Scholar 

  28. 28.

    Kawawaki T, Wang H, Kubo T, Saito K, Nakazaki J, Segawa H, Tatsuma T (2015) Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 9:4165–4172

    CAS  Article  Google Scholar 

  29. 29.

    Baek S, Song J, Choi W, Song H, Jeong S, Lee J (2015) A resonance-shifting hybrid n-type layer for boosting near-infrared response in highly efficient colloidal quantum dots solar cells. Adv Mater 27:8102–8108

    CAS  Article  Google Scholar 

  30. 30.

    Beck F, Stavrinadis A, Diedenhofen S, Lasanta T, Konstantatos G (2014) Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics 1:1197–1205

    CAS  Article  Google Scholar 

  31. 31.

    Gonfa B, Kim M, Zheng P, Cushing S, Qiao Q, Wu N, Khakani M, Ma D (2016) Investigation of the plasmonic effect in air-processed PbS/CdS core–shell quantum dot based solar cells. J Mater Chem A 4:13071–13080

    CAS  Article  Google Scholar 

  32. 32.

    Hou B, Cho Y, Kim B, Hong J, Park J, Ahn S, Sohn J, Cha S, Kim J (2016) Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett 1:834–839

    CAS  Article  Google Scholar 

  33. 33.

    Luo Q, Zhang C, Deng X, Zhu H, Li Z, Wang Z, Chen X, Huang S (2017) Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl Mater Interfaces 9:34821–34832

    CAS  Article  Google Scholar 

  34. 34.

    Hou B, Cho Y, Kim B-S, Ahn D, Lee S, Park J, Lee Y-W, Hong J, Im H, Morris S, Sohn J, Cha S, Kim J (2017) Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications. J Mater Chem C 5:3692–3698

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea (NRF) (2019R1A2C1005930) and the European Commission Horizon 2020 under Grant Agreement Number 685758.

Author information



Corresponding author

Correspondence to SeungNam Cha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 1983 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Kim, BS., Hou, B. et al. Plasmonic Effects of Dual-Metal Nanoparticle Layers for High-Performance Quantum Dot Solar Cells. Plasmonics 15, 1007–1013 (2020).

Download citation


  • Plasmonic effect
  • Colloidal quantum dot
  • Quantum dot solar cell
  • Near-field oscillation
  • Light scattering