Plasmonic Sensors Based on Funneling Light Through Nanophotonic Structures

Abstract

We present a refractometric sensor realized as a stack of metallic gratings with subwavelength features and embedded within a low-index dielectric medium. Light is strongly confined through funneling mechanisms and excites resonances that sense the analyte medium. Two terminations of the structure are compared. One of them has a dielectric medium in contact with the analyte and exploits the selective spectral transmission of the structure. The other design has a metallic continuous layer that generates surface plasmon resonances at the metal/analyte interface. Both designs respond with narrow spectral features that are sensible to the change in the refractive index of the analyte and can be used for sensing biomedical samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Jorgenson R, Yee S (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuat B: Chem 12(3):213–220. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0925400593800213

    CAS  Article  Google Scholar 

  2. 2.

    Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132(49):17358–17359. pMID: 21090714. [Online]. Available: https://doi.org/10.1021/ja1074272

    CAS  Article  Google Scholar 

  3. 3.

    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867. [Online]. Available: https://doi.org/10.1038/nmat2546

    CAS  Article  Google Scholar 

  4. 4.

    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815. [Online]. Available: https://doi.org/10.1021/la0493621

    CAS  Article  Google Scholar 

  5. 5.

    Li Y, Song L, Qiao Y (2015) Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods. Appl Phys Lett 106(2):021907. [Online]. Available: https://doi.org/10.1063/1.4905889

    Article  Google Scholar 

  6. 6.

    Du Y, Wei W, Zhang X, Li Y (2018) Tuning metamaterials nanostructure of janus gold nanoparticle film for surface-enhanced raman scattering. J Phys Chem C 122(14):7997–8002. [Online]. Available: https://doi.org/10.1021/acs.jpcc.8b00676

    CAS  Article  Google Scholar 

  7. 7.

    Elshorbagy MH, Cuadrado A, Alda J (2017) High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photon Res 5(6):654–661. [Online]. Available: http://www.osapublishing.org/prj/abstract.cfm?URI=prj-5-6-654

    CAS  Article  Google Scholar 

  8. 8.

    Elshorbagy MH, Cuadrado A, Gonzalez G, Gonzalez FJ, Alda J (2019) Performance improvement of refractometric sensors through hybrid plasmonic–fano resonances. J Lightwave Technol 37(13):2905–2913. [Online]. Available: https://doi.org/10.1109/JLT.2019.2906933

    CAS  Article  Google Scholar 

  9. 9.

    Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuat B: Chem 41:207–211. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925400597802973

    CAS  Article  Google Scholar 

  10. 10.

    van Gent J, Lambeck PV, Kreuwel HJ, Gerritsma GJ, Sudhölter EJ, Reinhoudt DN, Popma TJ (1990) Optimization of a chemooptical surface plasmon resonance based sensor. Appl Opt 29(19):2843–2849. [Online]. Available: https://doi.org/10.1364/AO.29.002843

    Article  Google Scholar 

  11. 11.

    Elshorbagy MH, Cuadrado A, Alda J (2017) Plasmonic sensor based on dielectric nanoprisms. Nanoscale Res Lett 12(1):580. [Online]. Available: https://doi.org/10.1186/s11671-017-2347-7

    Article  Google Scholar 

  12. 12.

    Wang H, Zhang H, Dong J, Hu S, Zhu W, Qiu W, Lu H, Yu J, Guan H, Gao S, Li Z, Liu W, He M, Zhang J, Chen Z, Luo Y (2018) Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (ws2) nanosheets overlayer. Photon Res 6(6):485–491. [Online]. Available: http://www.osapublishing.org/prj/abstract.cfm?URI=prj-6-6-485

    CAS  Article  Google Scholar 

  13. 13.

    Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H, Qi Y (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chin Phys B 28(4):044201. [Online]. Available: https://doi.org/10.1088/1674-1056/28/4/044201

    CAS  Article  Google Scholar 

  14. 14.

    Li Y, Liu Z, Tang Q, Shi L, Chen Q, Du G, Wu B, Liu G, Li L (2019) Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application. Appl Phys Express 12:072002. [Online]. Available: https://doi.org/10.7567/1882-0786/ab24af

    CAS  Article  Google Scholar 

  15. 15.

    Liu J-T, Hu H-F, Shao X-P (2019) Polarization-insensitive ultra-narrow plasmon-induced transparency and short-range surface plasmon polariton bloch wave in ultra-thin metallic film nanostructures. Plasmonics 14 (1):139–146. [Online]. Available: https://doi.org/10.1007/s11468-018-0786-3

    CAS  Article  Google Scholar 

  16. 16.

    Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H (2017) Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res Lett 12:1. [Online]. Available: https://doi.org/10.1186/s11671-016-1773-2

    Article  Google Scholar 

  17. 17.

    Bouchon P, Pardo F, Portier B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J-L (2011) Total funneling of light in high aspect ratio plasmonic nanoresonators. Appl Phys Lett 98(19):191109. [Online]. Available: https://doi.org/10.1063/1.3588393

    Article  Google Scholar 

  18. 18.

    Hughes TW, Fan S (2016) Plasmonic circuit theory for multiresonant light funneling to a single spatial hot spot. Nano Lett 16(9):5764–5769. pMID: 27518827. [Online]. Available: https://doi.org/10.1021/acs.nanolett.6b02474

    CAS  Article  Google Scholar 

  19. 19.

    Li J-W, Hong J-S, Chou W-T, Huang D-J, Chen K-R (2018) Light funneling profile during enhanced transmission through a subwavelength metallic slit. Plasmonics 13(6):2249–2254. [Online]. Available: https://doi.org/10.1007/s11468-018-0745-z

    Article  Google Scholar 

  20. 20.

    Pardo F, Bouchon P, Haïdar R, Pelouard J-L (2011) Light funneling mechanism explained by magnetoelectric interference. Phys Rev Lett 107:093902. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.107.093902

    Article  Google Scholar 

  21. 21.

    Wu D, Liu Y, Li R, Chen L, Ma R, Liu C, Ye H (2016) Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res Lett 11(1):483. [Online]. Available: https://doi.org/10.1186/s11671-016-1705-1

    Article  Google Scholar 

  22. 22.

    Wu D, Li R, Liu Y, Yu Z, Yu L, Chen L, Liu C, Ma R, Ye H (2017) Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res Lett 12(1):427. [Online]. Available: https://doi.org/10.1186/s11671-017-2203-9

    Article  Google Scholar 

  23. 23.

    Danilov A, Tselikov G, Wu F, Kravets VG, Ozerov I, Bedu F, Grigorenko AN, Kabashin AV (2018) Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosensors Bioelectron 104:102–112. [Online]. Available: https://doi.org/10.1016/j.bios.2017.12.001

    CAS  Article  Google Scholar 

  24. 24.

    Zhu P, Jin P, Shi H, Guo LJ (2013) Funneling light into subwavelength grooves in metal/dielectric multilayer films. Opt Express 21(3):3595–3602. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-3-3595

    CAS  Article  Google Scholar 

  25. 25.

    Jin YL, Chen JY, Xu L, Wang PN (2006) Refractive index measurement for biomaterial samples by total internal reflection. Phys Med Biol 51(20):N371–N379. [Online]. Available: https://doi.org/10.1088/0031-9155/51/20/n02

    CAS  Article  Google Scholar 

Download references

Funding

This work was partially supported by the Egyptian Ministry of Higher Education missions section.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Alda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elshorbagy, M.H., Cuadrado, A. & Alda, J. Plasmonic Sensors Based on Funneling Light Through Nanophotonic Structures. Plasmonics 15, 915–921 (2020). https://doi.org/10.1007/s11468-019-01105-6

Download citation

Keywords

  • Nanophotonics
  • Plasmonics
  • Optical sensors
  • Refractometry