Skip to main content
Log in

Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic nanoparticles (NPs) like silver (Ag) strongly absorb the incident light and produce enhanced localized electric field at the localized surface plasmon resonance (LSPR) frequency. Enormous theoretical and experimental research has focused on the plasmonic properties of the metallic nanoparticles with sizes greater than 10 nm. However, such studies on smaller sized NPs in the size range of 3 to 10 nm (quantum-sized regime) are sparse. In this size regime, the conduction band of the metal particles discretizes, thus altering plasmon properties of the NPs from classical to the quantum regime. In this study, plasmonic properties of the spherical Ag NPs in size range of 3 to 20 nm were investigated using both quantum and classical modeling to understand the importance of invoking quantum regime to accurately describing their properties in this size regime. Theoretical calculations using standard Mie theory were carried out to monitor the LSPR peak shift and electric field enhancement as a function of the size of the bare plasmonic nanoparticle and the refractive index (RI) of the surrounding medium. Comparisons were made with and without invoking quantum regime. Also, the optical properties of metallic NPs conjugated with a chemical ligand using multi-layered Mie theory were studied, and interesting trends were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. and percentages of land uses identified fo, Hoboken

    Book  Google Scholar 

  2. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264. https://doi.org/10.1021/ar960016n

    Article  PubMed  CAS  Google Scholar 

  3. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. https://doi.org/10.1002/adma.200400271

    Article  CAS  Google Scholar 

  4. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088. https://doi.org/10.1021/nl071008a

    Article  CAS  Google Scholar 

  5. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834. https://doi.org/10.1021/nl050074e

    Article  PubMed  CAS  Google Scholar 

  6. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586. https://doi.org/10.1021/ar7002804

    Article  PubMed  CAS  Google Scholar 

  7. Gao MX, Zou HY, Gao PF, Liu Y, Li N, Li YF, Huang CZ (2016) Insight into a reversible energy transfer system. Nanoscale 8:16236–16242. https://doi.org/10.1039/c6nr03262a

    Article  PubMed  CAS  Google Scholar 

  8. Liu GL, Long Y-T, Choi Y, Kang T, Lee LP (2007) Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods 4:1015–1017. https://doi.org/10.1038/nmeth1133

    Article  PubMed  CAS  Google Scholar 

  9. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4:742–746. https://doi.org/10.1038/nnano.2009.258

    Article  PubMed  CAS  Google Scholar 

  10. Kinkhabwala A, Yu Z, Fan S et al (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657. https://doi.org/10.1038/nphoton.2009.187

    Article  CAS  Google Scholar 

  11. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574. https://doi.org/10.1021/nl050928v

    Article  PubMed  CAS  Google Scholar 

  12. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag Nanocrystals. J Phys Chem B 107:9964–9972. https://doi.org/10.1021/jp034632u

    Article  CAS  Google Scholar 

  13. Zhang X, Marocico CA, Lunz M, Gerard VA, Gun'ko YK, Lesnyak V, Gaponik N, Susha AS, Rogach AL, Bradley AL (2014) Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano 8:1273–1283. https://doi.org/10.1021/nn406530m

    Article  PubMed  CAS  Google Scholar 

  14. Lunz M, Gerard VA, Gun’Ko YK et al (2011) Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. Nano Lett 11:3341–3345. https://doi.org/10.1021/nl201714y

    Article  PubMed  CAS  Google Scholar 

  15. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. https://doi.org/10.1021/ja057254a

    Article  PubMed  CAS  Google Scholar 

  16. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–13554. https://doi.org/10.1073/pnas.2232479100

    Article  PubMed  CAS  Google Scholar 

  17. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective Photothermal destruction of Cancer cells with the use of Immunotargeted gold nanoparticles. Photochem Photobiol 82:412–417. https://doi.org/10.1562/2005-12-14-RA-754

    Article  PubMed  CAS  Google Scholar 

  18. Jain PK, ElSayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29. https://doi.org/10.1016/S1748-0132(07)70016-6

    Article  Google Scholar 

  19. Jain PK, Huang X, El-sayed IH, El-Sayed MA (2007) Review of some interesting surface Plasmon resonance-enhanced properties of Noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118. https://doi.org/10.1007/s11468-007-9031-1

    Article  CAS  Google Scholar 

  20. Yong K, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4:79–93. https://doi.org/10.1007/s11468-009-9078-2

    Article  CAS  Google Scholar 

  21. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne R (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453. https://doi.org/10.1038/nmat2162

    Article  PubMed  CAS  Google Scholar 

  22. Iqbal S, Shabaninezhad M, Hatshan M et al (2018) Ion-implanted silver nanoparticles for metal-enhanced fluorescence. AIP Adv 8:1–12. https://doi.org/10.1063/1.5045570

    Article  CAS  Google Scholar 

  23. Liu J, Ma Y, Shao J et al (2018) Ultra-tall sub-wavelength gold nano pillars for high sensitive LSPR sensors. Microelectron Eng 196:7–12. https://doi.org/10.1016/j.mee.2018.04.007

    Article  CAS  Google Scholar 

  24. Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Phys E Low-Dimensional Syst Nanostructures 104:233–240. https://doi.org/10.1016/j.physe.2018.07.039

    Article  CAS  Google Scholar 

  25. Fathi F, Rashidi MR, Omidi Y (2019) Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 192:118–127. https://doi.org/10.1016/j.talanta.2018.09.023

    Article  PubMed  CAS  Google Scholar 

  26. Mejía-Salazar JR, Oliveira ON (2018) Plasmonic biosensing. Chem Rev 118:10617–10625. https://doi.org/10.1021/acs.chemrev.8b00359

    Article  PubMed  CAS  Google Scholar 

  27. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311. https://doi.org/10.1021/ac900221y

    Article  PubMed  CAS  Google Scholar 

  28. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579. https://doi.org/10.1021/ac061730d

    Article  PubMed  CAS  Google Scholar 

  29. Shabaninezhad M, Ramakrishna G (2019) Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells. J Chem Phys 150:1–9. https://doi.org/10.1063/1.5090885

    Article  CAS  Google Scholar 

  30. Popescu VA (2018) Simulation of some Plasmonic biosensors for detection of hemoglobin concentration in human blood. Plasmonics 13:1507–1511. https://doi.org/10.1007/s11468-017-0657-3

    Article  CAS  Google Scholar 

  31. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453. https://doi.org/10.1080/01442350050034180

    Article  CAS  Google Scholar 

  32. Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J Chem Phys 111:1255–1264. https://doi.org/10.1063/1.479310

    Article  CAS  Google Scholar 

  33. Hodak JH, Henglein A, Hartland GV (2000) Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) au nanoparticles. J Chem Phys 112:5942–5947. https://doi.org/10.1063/1.481167

    Article  CAS  Google Scholar 

  34. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  35. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253. https://doi.org/10.1021/jp063879z

    Article  PubMed  CAS  Google Scholar 

  36. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  PubMed  CAS  Google Scholar 

  37. Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331–20338. https://doi.org/10.1021/jp054385p

    Article  PubMed  CAS  Google Scholar 

  38. Rechberger W, Hohenau A, Leitner A et al (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141. https://doi.org/10.1016/S0030-4018(03)01357-9

    Article  CAS  Google Scholar 

  39. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366. https://doi.org/10.1063/1.1629280

    Article  PubMed  CAS  Google Scholar 

  40. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164. https://doi.org/10.1016/j.cplett.2010.01.062

    Article  CAS  Google Scholar 

  41. Jain PK, El-Sayed MA (2008) Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett 8:4347–4352. https://doi.org/10.1021/nl8021835

    Article  PubMed  CAS  Google Scholar 

  42. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5:85–97. https://doi.org/10.1007/s11468-009-9120-4

    Article  CAS  Google Scholar 

  43. Zhu J, Ren Y-J (2013) Tuning the plasmon shift and local electric field distribution of gold nanodumbbell: the effect of surface curvature transition from positive to negative. Appl Surf Sci 285P:649–656. https://doi.org/10.1016/j.apsusc.2013.08.106

    Article  CAS  Google Scholar 

  44. Kumar J, Wei X, Barrow S, Funston AM, Thomas KG, Mulvaney P (2013) Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys Chem Chem Phys 15:4258–4264. https://doi.org/10.1039/c3cp44657c

    Article  PubMed  CAS  Google Scholar 

  45. Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675. https://doi.org/10.1021/jp0608628

    Article  PubMed  CAS  Google Scholar 

  46. Lermé J, Bonnet C, Lebeault MA et al (2017) Surface Plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences. J Phys Chem C 121:5693–5708. https://doi.org/10.1021/acs.jpcc.6b12298

    Article  CAS  Google Scholar 

  47. Nicolas R, Lévêque G, Adam PM, Maurer T (2018) Graphene doping induced Tunability of nanoparticles Plasmonic resonances. Plasmonics 13:1219–1225. https://doi.org/10.1007/s11468-017-0623-0

    Article  CAS  Google Scholar 

  48. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934. https://doi.org/10.1063/1.1587686

    Article  CAS  Google Scholar 

  49. Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in Plasmonics applications: size dependence of Plasmon resonance frequencies and damping rates for Nanospheres. Plasmonics 11:941–951. https://doi.org/10.1007/s11468-015-0128-7

    Article  PubMed  CAS  Google Scholar 

  50. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150. https://doi.org/10.1007/s11468-008-9066-y

    Article  CAS  Google Scholar 

  51. Jie YM, Zhang ZL, Wu GJS (2011) Theoretical analysis the optical properties of multi-coupled silver Nanoshell particles. Plasmonics 6:705–713. https://doi.org/10.1007/s11468-011-9254-z

    Article  CAS  Google Scholar 

  52. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–428. https://doi.org/10.1038/nature10904

    Article  PubMed  CAS  Google Scholar 

  53. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. PNAS 107:14530–14534. https://doi.org/10.1073/pnas.1007524107

    Article  PubMed  Google Scholar 

  54. Varas A, García-González P, García-Vidal FJ, Rubio A (2015) Anisotropy effects on the Plasmonic response of nanoparticle dimers. J Phys Chem Lett 6:1891–1898. https://doi.org/10.1021/acs.jpclett.5b00573

    Article  PubMed  CAS  Google Scholar 

  55. Barbry M, Koval P, Marchesin F et al (2015) Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett 15:3410–3419. https://doi.org/10.1021/acs.nanolett.5b00759

    Article  PubMed  CAS  Google Scholar 

  56. Mokkath JH (2017) Shapes matter: examining the optical response evolution in stretched aluminium nanoparticles via time-dependent density functional theory. Phys Chem Chem Phys 20:51–55. https://doi.org/10.1039/c7cp07151e

    Article  PubMed  CAS  Google Scholar 

  57. Kulkarni V, Prodan E, Nordlander P (2013) Quantum plasmonics: optical properties of a nanomatryushka. Nano Lett 13:5873–5879. https://doi.org/10.1021/nl402662e

    Article  PubMed  CAS  Google Scholar 

  58. Marchesin F, Koval P, Barbry M et al (2016) Plasmonic response of metallic Nanojunctions driven by single atom motion: quantum transport revealed in optics. ACS Photonics 3:269–277. https://doi.org/10.1021/acsphotonics.5b00609

    Article  CAS  Google Scholar 

  59. Sinha-Roy R, García-González P, Weissker HC et al (2017) Classical and ab initio Plasmonics meet at sub-nanometric Noble metal rods. ACS Photonics 4:1484–1493. https://doi.org/10.1021/acsphotonics.7b00254

    Article  CAS  Google Scholar 

  60. Rossi TP, Kuisma M, Puska MJ, Nieminen RM, Erhart P (2017) Kohn-sham decomposition in real-time time-dependent density-functional theory: an efficient tool for analyzing Plasmonic excitations. J Chem Theory Comput 13:4779–4790. https://doi.org/10.1021/acs.jctc.7b00589

    Article  PubMed  CAS  Google Scholar 

  61. Kulkarni V, Manjavacas A (2015) Quantum effects in charge transfer Plasmons. ACS Photonics 2:987–992. https://doi.org/10.1021/acsphotonics.5b00246

    Article  CAS  Google Scholar 

  62. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer

  63. Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:1–3. https://doi.org/10.1063/1.2360270

    Article  CAS  Google Scholar 

  64. Genzel L, Martin TP, Kreibig U (1975) Dielectric function and plasma resonances of small metal particles. Zeitschrift für Phys B Condens Matter 21:339–346. https://doi.org/10.1007/BF01325393

    Article  CAS  Google Scholar 

  65. He Y, Zeng T (2010) First-principles study and model of dielectric functions of silver nanoparticles. J Phys Chem C 114:18023–18030. https://doi.org/10.1021/jp101598j

    Article  CAS  Google Scholar 

  66. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:1–4. https://doi.org/10.1103/PhysRevLett.93.077402

    Article  CAS  Google Scholar 

  67. Palik ED, Elsevier Inc V 5 (1997) Handbook of optical constants of solids. Academic, Cambridge

    Google Scholar 

  68. Romann J, Wei J, Pileni MP (2015) Computational matching of surface plasmon resonance: interactions between silver nanoparticles and ligands. J Phys Chem C 119:11094–11099. https://doi.org/10.1021/jp511859p

    Article  CAS  Google Scholar 

  69. Shabaninezhad M, Abuhagr A, Sakthivel NA et al (2019) Ultrafast Electron dynamics in Thiolate-protected Plasmonic gold clusters : size and ligand effect. J Phys Chem C 123:13344–13353. https://doi.org/10.1021/acs.jpcc.9b01739

    Article  CAS  Google Scholar 

  70. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283. https://doi.org/10.1364/AO.37.005271

    Article  PubMed  CAS  Google Scholar 

  71. Kreibig U, Fragstein C v. (1969) The limitation of electron mean free path in small silver particles. Zeitschrift für Phys 224:307–323. https://doi.org/10.1007/BF01393059

    Article  CAS  Google Scholar 

  72. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  73. Fu Q, Sun W (2001) Mie theory for light scattering by a spherical particle in an absorbing medium. Appl Opt 40:1354–1361. https://doi.org/10.1364/AO.40.001354

    Article  PubMed  CAS  Google Scholar 

  74. Yang W (2003) Improved recursive algorithm for light scattering by a multilayered sphere. Appl Opt 42:1710–1720. https://doi.org/10.1364/AO.42.001710

    Article  PubMed  Google Scholar 

  75. Peña O, Pal U (2009) Scattering of electromagnetic radiation by a multilayered sphere. Comput Phys Commun 180:2348–2354. https://doi.org/10.1016/j.cpc.2009.07.010

    Article  CAS  Google Scholar 

  76. Raschke G, Brogl S, Susha AS et al (2004) Gold Nanoshells improve single nanoparticle molecular sensors. Nano Lett 4:1853–1857. https://doi.org/10.1021/nl049038q

    Article  CAS  Google Scholar 

  77. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured Plasmonic sensors. Chem Rev 108:494–521. https://doi.org/10.1021/cr068126n

    Article  PubMed  CAS  Google Scholar 

  78. Lee J-H, Cho H-Y, Choi HK et al (2018) Application of gold nanoparticle to plasmonic biosensors. Int J Mol Sci 19:1–14. https://doi.org/10.3390/ijms19072021

    Article  CAS  Google Scholar 

  79. Lee K, El-sayed MA (2006) Gold and Silver Nanoparticles in Sensing and Imaging : Sensitivity of Plasmon Response to Size , Shape , and Metal Composition. J Phys Chem B 110:19220–19225. https://doi.org/10.1021/jp062536y

    Article  PubMed  CAS  Google Scholar 

  80. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3606–3619. https://doi.org/10.1021/jp066539m

    Article  CAS  Google Scholar 

  81. Mayer KM, Hafner JH (2011) Localized surface Plasmon resonance sensors. Chem Rev 111:3828–3857. https://doi.org/10.1021/cr100313v

    Article  PubMed  CAS  Google Scholar 

  82. Sun Y, Gray SK, Peng S (2011) Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles. Phys Chem Chem Phys 13:11814–11826. https://doi.org/10.1039/c1cp20265k

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The physics department of Western Michigan University provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Shabaninezhad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabaninezhad, M., Ramakrishna, G. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics 15, 783–795 (2020). https://doi.org/10.1007/s11468-019-01102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01102-9

Keywords

Navigation