Skip to main content
Log in

Directional Excitation of Surface Plasmon Polaritons by Circularly Polarized Vortex Beams

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the excitation of surface plasmon polaritons (SPPs) using a metallic nanoaperture array illuminated by circularly polarized Laguerre-Gaussian (LG) vortex beams. The direction of SPP excitation is tunable by changing the circular polarization and topological charge of LG beams. The left- or right-handed circular polarization determines SPP propagation on either side of the nanoaperture array. Furthermore, varying the topological charge of LG beam will result in beam splitting of SPPs. We also utilize a composite nanoaperture array with different periods to achieve unidirectional excitation of SPPs. The study provides an interesting approach to control the excitation direction of SPPs and may find great applications in SPP generators and optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    PubMed  CAS  Google Scholar 

  2. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    CAS  Google Scholar 

  3. Zayats AV, Smolyaninov II (2003) Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A Pure Appl Opt 5(4):S16–S50

    CAS  Google Scholar 

  4. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6(11):737–748

    CAS  Google Scholar 

  5. Hu GW, Hong XM, Wang K, Wu J, Xu HX, Zhao WC, Liu WW, Zhang S, Garcia-Vidal F, Wang B, Lu PX, Qiu CW (2019) Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface. Nat Photonics 13(7):467–472

    CAS  Google Scholar 

  6. Chen J, Wang K, Long H, Han X, Hu H, Liu W, Wang B, Lu P (2018) Tungsten disulfide-gold Nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano Lett 18(2):1344–1350

    PubMed  CAS  Google Scholar 

  7. Butet J, Brevet PF, Martin OJ (2015) Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9(11):10545–10562

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11(12):5519–5523

    PubMed  CAS  Google Scholar 

  9. Zhang HC, Fan Y, Guo J, Fu X, Cui TJ (2015) Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. Acs Photonics 3(1):139–146

    Google Scholar 

  10. Shao DB, Chen SC (2005) Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl Phys Lett 86(25):253107

    Google Scholar 

  11. Luo X, Ishihara T (2004) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12(14):3055–3065

    PubMed  Google Scholar 

  12. Berini P (2014) Surface plasmon photodetectors and their applications. Laser Photonics Rev 8(2):197–220

    CAS  Google Scholar 

  13. Yu ZF, Veronis G, Fan SH, Brongersma ML (2006) Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89(15):151116

    Google Scholar 

  14. Echtermeyer TJ, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari AC (2016) Surface plasmon polariton graphene photodetectors. Nano Lett 16(1):8–20

    PubMed  CAS  Google Scholar 

  15. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204

    PubMed  CAS  Google Scholar 

  16. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    PubMed  CAS  Google Scholar 

  17. Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 45(38):389501

    Google Scholar 

  18. Shchegrov AV, Novikov IV, Maradudin AA (1997) Scattering of surface plasmon polaritons by a circularly symmetric surface defect. Phys Rev Lett 78(22):4269–4272

    CAS  Google Scholar 

  19. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    PubMed  CAS  Google Scholar 

  20. Bar-Lev D, Arie A, Scheuer J, Epstein I (2015) Efficient excitation and control of arbitrary surface plasmon polariton beams using one-dimensional metallic gratings. Physics J Opt Soc Am B 32(5):923–932

    CAS  Google Scholar 

  21. Sun ZJ, Jung YS, Kim HK (2003) Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl Phys Lett 83(15):3021–3023

    CAS  Google Scholar 

  22. Torosyan G, Rau C, Pradarutti B, Beigang R (2004) Generation and propagation of surface plasmons in periodic metallic structures. Appl Phys Lett 85(16):3372–3374

    CAS  Google Scholar 

  23. Sonnefraud Y, Kerman S, Di Martino G, Lei DY, Maier SA (2012) Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy. Opt Express 20(5):4893–4902

    PubMed  Google Scholar 

  24. Wang B, Aigouy L, Bourhis E, Gierak J, Hugonin JP, Lalanne P (2009) Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence. Appl Phys Lett 94(1):011114

    Google Scholar 

  25. Xu T, Zhao YH, Gan DC, Wang CT, Du CL, Luo XG (2008) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92(10):101501

    Google Scholar 

  26. Li XW, Tan QF, Bai BF, Jin GF (2011) Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit. Appl Phys Lett 98(25):251109

    Google Scholar 

  27. López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3(5):324–328

    Google Scholar 

  28. Chen J, Li Z, Yue S, Gong Q (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97(4):041113

    Google Scholar 

  29. Kim H, Lee B (2009) Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics 4(2):153–159

    Google Scholar 

  30. Huang X, Brongersma ML (2013) Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett 13(11):5420–5424

    PubMed  CAS  Google Scholar 

  31. Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI (2014) Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light-Sci Appl 3(8):e197–e197

    CAS  Google Scholar 

  32. Radko IP, Bozhevolnyi SI, Brucoli G, Martin-Moreno L, Garcia-Vidal FJ, Boltasseva A (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17(9):7228–7232

    PubMed  CAS  Google Scholar 

  33. Baron A, Devaux E, Rodier JC, Hugonin JP, Rousseau E, Genet C, Ebbesen TW, Lalanne P (2011) Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett 11(10):4207–4212

    PubMed  CAS  Google Scholar 

  34. Liu Y, Palomba S, Park Y, Zentgraf T, Yin X, Zhang X (2012) Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett 12(9):4853–4858

    PubMed  CAS  Google Scholar 

  35. Yang J, Xiao X, Hu C, Zhang W, Zhou S, Zhang J (2014) Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair. Nano Lett 14(2):704–709

    PubMed  CAS  Google Scholar 

  36. Ding F, Deshpande R, Bozhevolnyi SI (2018) Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light-Sci Appl 7(4):17178

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Du L, Kou SS, Balaur E, Cadusch JJ, Roberts A, Abbey B, Yuan XC, Tang D, Lin J (2015) Broadband chirality-coded meta-aperture for photon-spin resolving. Nat Commun 6:10051

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130):331–334

    PubMed  CAS  Google Scholar 

  39. Huang LL, Chen XZ, Bai BF, Tan QF, Jin GF, Zentgraf T, Zhang S (2013) Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light-Sci Appl 2(3):e70–e70

    Google Scholar 

  40. O’Connor D, Ginzburg P, Rodriguez-Fortuno FJ, Wurtz GA, Zayats AV (2014) Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat Commun 5:5327

    PubMed  Google Scholar 

  41. Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV (2015) Spin–orbit interactions of light. Nat Photonics 9(12):796–808

    CAS  Google Scholar 

  42. Chen J, Chen X, Li T, Zhu SN (2018) On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev 12(8):1700331

    Google Scholar 

  43. Allen L, Beijersbergen MW, Spreeuw RJ, Woerdman JP (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45(11):8185–8189

    PubMed  CAS  Google Scholar 

  44. Yao AM, Padgett MJ (2011) Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3(2):161–204

    CAS  Google Scholar 

  45. Zhan Q (2006) Properties of circularly polarized vortex beams. Opt Lett 31(7):867–869

    PubMed  Google Scholar 

  46. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11674117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Q., Liu, J., Ke, S. et al. Directional Excitation of Surface Plasmon Polaritons by Circularly Polarized Vortex Beams. Plasmonics 15, 727–734 (2020). https://doi.org/10.1007/s11468-019-01075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01075-9

Keywords

Navigation