Skip to main content
Log in

High Depth-of-Field Nanostructures by Rotational Near-Field Photolithography

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Rotational near-field photolithography uses one or an array of plasmonic lenses to directly pattern features on a rotating substrate that is coated with a very sensitive photoresist. Critical for this method is its limited etching depth. We investigate and demonstrate that the depth-of-field of the so-obtained nanopatterns is determined by both the refractive index and the thickness of the air/photoresist multi-dielectric layer. Using the transfer-matrix theory, the bounded air/photoresist dielectric layer refracts the light at the interface, which causes the constructive interference of surface plasmon polaritons (SPPs) to be confined. The wavelength of the SPPs decreases with increasing photoresist thickness. Both the simulation and experiment indicate that high depth-of-field nanostructures can be obtained by optimizing the resonance wavelength of SPPs due to the response of the system. Combining this with high-speed rotational near-field photolithography technology, we find that nanostructures with four times the depth-of-field compared with the previous off-resonance system can be obtained using organic photoresists with this optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
FIG. 6
Fig. 7

Similar content being viewed by others

References

  1. Weixing Y, Taisheng W, Hongxin Z et al (2011) Plasmonic nanolithography:a review. Plasmonics 6(3)

  2. Roxworthy BJ, Ko KD, Kumar A et al (2011) Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett 12(2):796–801

    Article  Google Scholar 

  3. Stockman MI (2015) Nanoplasmonic sensing and detection. Science 348(6232):287–288

    Article  CAS  Google Scholar 

  4. Bao W, Staffaroni M, Bokor J et al (2013) Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Opt Express 21(7):8166

    Article  Google Scholar 

  5. Bao W, Melli M, Caselli N et al (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338(6112):1317–1321

    Article  CAS  Google Scholar 

  6. Zhang Y, Wang J, Shen J, Man Z, Shi W, Min C, Yuan G, Zhu S, Urbach HP, Yuan X (2014) Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. Nano Lett 14(11):6430–6436

    Article  CAS  Google Scholar 

  7. Kadic M, Guenneau S, Enoch S, Ramakrishna SA (2011) Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media. ACS Nano 5(9):6819–6825

    Article  CAS  Google Scholar 

  8. Blaikie RJ, Melville DO, Alkaisi MM (2006) Super-resolution near-field lithography using planar silver lenses: a review of recent developments. Microelectron Eng 4(83):723–729

    Article  Google Scholar 

  9. Betzig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067):189–196

    Article  CAS  Google Scholar 

  10. Chaturvedi P, Wu W, Logeeswaran VJ, Yu Z, Islam MS, Wang SY, Williams RS, Fang NX (2010) A smooth optical superlens. Appl Phys Lett 4(96):43102

    Article  Google Scholar 

  11. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 5721(308):534–537

    Article  Google Scholar 

  12. Srituravanich W, Pan L, Wang Y, Sun C, Bogy DB, Zhang X (2008) Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol 3(12):733–737

    Article  CAS  Google Scholar 

  13. Wang Y, Du Z, Park Y et al (2015) Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging. Opt Lett 40:3918–3921

    Article  CAS  Google Scholar 

  14. Wen X, Traverso LM, Srisungsitthisunti P et al (2013) High precision dynamic alignment and gap control for optical near-field nanolithography. J Vac Sci Technol B 31(4):041601

  15. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1:175

    Article  CAS  Google Scholar 

  16. Wang Y, Wei X, Liang X, Yin S, Zi Y, Peng Y, Tsui K (2015) The instability of angstrom-scale head-disk interface induced by electrostatic force. IEEE Trans Magn 51(11):1–4

    Google Scholar 

  17. Wu L, Bogy DB (1999) Unstructured triangular mesh generation techniques and a finite volume numerical scheme for slider air bearing simulation with complex shaped rails. IEEE Trans Magn 35(5):2421–2423

    Article  Google Scholar 

  18. Zeng Q, Bogy DB (1998) Dynamics of suspension-slider-air- bearing systems: experimental study. IEEE ASME Trans Mechatronics 3(3):210–217

    Article  Google Scholar 

  19. Zeng QH, Bogy DB (1998) Dynamics of suspension-slider-air-bearing systems: experimental study [J]. IEEE ASME Trans Mech 3(3):0–217

    Google Scholar 

  20. Wu H, Bogy D (2017) Use of an embedded contact sensor to study nanoscale heat transfer in heat assisted magnetic recording. Appl Phys Lett 3(110):33104

    Article  Google Scholar 

  21. Yueqiang H, Yonggang M (2017) Numerical modeling and analysis of plasmonic flying head for rotary near-field lithography technology. Friction:1–14

  22. Ji J, Hu Y, Meng Y, Zhang J, Xu J, Li S, Yang G (2016) The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system. Nanotechnology 27(18):185303

    Article  Google Scholar 

  23. Zhang C, Jiang Z, Liu J et al (2018) Non-near-field sub-diffraction focusing in the visible wavelength range by a Fibonacci subwavelength circular grating. J Opt Soc Am A 35(10):1701–1704

    Article  CAS  Google Scholar 

  24. Zhu Y, Yuan W, Yu Y et al (2018) TE-polarized design for metallic slit lenses: a way to deep-subwavelength focusing over a broad wavelength range. Opt Lett 43(2):206–209

    Article  CAS  Google Scholar 

  25. Wang J, Zhang J (2018) Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light. Opt Express 26(11):14626–14635

    Article  CAS  Google Scholar 

  26. Wang Y, Saad ME, Ni K et al (2016) Scalable plasmonic nanolithography: prototype system design and construction. In: Proceedings of the ASME 2016 international manufacturing science and engineering conference Paper No. MSEC2016-8671

  27. Xu X, Pan L (2014) Optothermal response of plasmonic nanofocusing lens under picosecond laser irradiation. Proc SPIE Int Soc Opt Eng 8967(1):896707

    Google Scholar 

  28. Jiaxin J, Yonggang M et al (2017) High-speed near-field photolithography at 16.85 nm linewidth with linearly polarized illumination. Opt Express 25(15):17571–17580

    Article  Google Scholar 

  29. Lee WS, Kim et al (2015) Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control. Appl Phys Lett 106(5):3566

    Google Scholar 

  30. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  31. Wang X, Cao Z, Yin C (2016) Progress in planar optical waveguides. Springer Berlin Heidelberg

  32. Davis TJ (2009) Surface plasmon modes in multi-layer thin films. Opt Commun 282(1):135–140

    Article  CAS  Google Scholar 

  33. Li L (1994) Determination of bound modes of multilayer planar waveguides by integration of an initial-value problem. J Opt Soc Am A 11(3):984–991

    Article  Google Scholar 

  34. Palik ED (1998) Handbook of optical constants of solids. Academic, New York 1(v. 3): 900

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (NSFC) (51805547), Shandong Provincial Natural Science Foundation (ZR2017LEE016), Fundamental Research Funds of Central Universities (18CX02018A and 19CX02018A), and State Key Laboratory of Tribology, Tsinghua University (SKLTKF16B14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxin Ji or Yonggang Meng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Xu, P., Chen, J. et al. High Depth-of-Field Nanostructures by Rotational Near-Field Photolithography. Plasmonics 15, 209–215 (2020). https://doi.org/10.1007/s11468-019-01026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01026-4

Keywords

Navigation