Skip to main content
Log in

Nanosecond Laser–Assisted Tuning of the Plasmon Band of Triangular-Shaped Ag Nanostructures and Development of a Broadband Visible-Near Infrared Light Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Most of the outstanding applications of silver nanoparticles (Ag NPs) have arisen from their tunable localized surface plasmon resonance (LSPR). In this report, we have systematically studied the photothermal transformation of morphology of triangular-shaped Ag NPs (TSNP) under irradiation of a nanosecond (ns)-pulsed laser of 1064-nm wavelength with the pulse duration of 10 ns at different laser fluence and irradiation time. Interestingly, at a typical value of fluence of 104–174 J/cm2 both the triangular and plate-like Ag NPs are transformed into spherical Ag NPs of size ~ 5 nm in just 20–40 min of irradiation that is found to be very much faster when it is compared with the results of well-known chemically etching–based reshaping process in the presence of KBr. We have also demonstrated the possible use of the plasmonic absorption properties of the triangular, plate-like and transformed spherical Ag NPs for the development of a broad-band visible-NIR light absorber by just mixing these Ag NPs of three different morphologies. We have got almost 20% average (overall below 35%) transmission in the wavelength range from 400 to 800 nm in the liquid phase and 57% (overall below 65%) when NPs are put into PVA matrix in 16 vol%. The applicability of the prepared broadband absorber is being verified by monitoring the current response of a light-dependent resistor and degradation process of rhodamine 6G dye in sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Fig. 2
Schematic 2
Fig. 3
Fig. 4
Schematic 3
Fig. 5

Similar content being viewed by others

References

  1. Potara M, Boca S, Licarete E, Damert A, Alupei MC, Chiriac MT, Popescu O, Schmidtd U, Astilean S (2013) Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale 5:6013–6022. https://doi.org/10.1039/c3nr00005b

    Article  CAS  PubMed  Google Scholar 

  2. Jiang Z, Wen G, Luo Y, Zhang X, Liu Q, Liang A (2014) A new silver nanorod SPR probe for detection of trace benzoyl peroxide. Sci Rep 4:5323–5330. https://doi.org/10.1038/srep05323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wijaya YN, Kim J, Hur SH, Park SH, Kim MH et al (2018) Nanocrystal-based sensing platform for the quantification of water in water-ethanol mixtures. Sensors Actuators B 263:59–68. https://doi.org/10.1016/j.snb.2018.02.111

    Article  CAS  Google Scholar 

  4. McFarland AD, Duyne RPV (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062. https://doi.org/10.1021/nl034372s

    Article  CAS  Google Scholar 

  5. Biswas S, Kole AK, Sarkar R, Kumbhakar P (2014) Synthesis of anisotropic nanostructures of silver for its possible applications in glucose and temperature sensing. Mater Res Express 1:045043–045058. https://doi.org/10.1088/2053-1591/1/4/045043

    Article  CAS  Google Scholar 

  6. Ghannam T (2017) Dipole-nano-laser based plasmonic nano-sensor for sensing photons and bio-chemical analytes. Plasmonics 12:125–130. https://doi.org/10.1007/s11468-016-0237-y

    Article  CAS  Google Scholar 

  7. Monteiro JP, de Oliveira JH, Radovanovic E, Brolo AG, Girotto EM (2016) Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics 11:45–52. https://doi.org/10.1007/s11468-015-0016-1

    Article  CAS  Google Scholar 

  8. Zhang T, Wang M, Yang Y, Fan F, Lee T, Liua H, Xiang D (2018) An on-chip hybrid plasmonic light steering concentrator with ∼96% coupling efficiency. Nanoscale 10:5097–5104. https://doi.org/10.1039/c8nr00213d

    Article  CAS  PubMed  Google Scholar 

  9. Ganeshan D, Xie F, Sun Q, Li Y, Wei M (2018) Plasmonic effects of silver nanoparticles embedded in the counter electrode on the enhanced performance of dye-sensitized solar cells. Langmuir 34:5367–5373. https://doi.org/10.1021/acs.langmuir.7b03086

    Article  CAS  PubMed  Google Scholar 

  10. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179. https://doi.org/10.1007/s11468-009-9088-0

    Article  CAS  Google Scholar 

  11. Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociak M, Hillenkamp M (2019) Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat Phys 15:275–280. https://doi.org/10.1038/s41567-018-0345-z

    Article  CAS  Google Scholar 

  12. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Duyne RPV (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114:12511–12516. https://doi.org/10.1021/jp104366r

    Article  CAS  Google Scholar 

  13. Yang X, Yu Y, Gao Z (2014) A highly sensitive plasmonic DNA assay–based on triangular silver nanoprism etching. ACS Nano 8:4902–4907. https://doi.org/10.1021/nn5008786

    Article  CAS  PubMed  Google Scholar 

  14. Hu S, Yi T, Huang Z, Liu B, Wang J, Yi X, Liu J (2019) Etching silver nanoparticles using DNA. Mater Horiz 6:155–159. https://doi.org/10.1039/C8MH01126E

    Article  CAS  Google Scholar 

  15. Li L, Zhang L, Zhao Y, Chen Z (2018) Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates. Microchim Acta 185:235–241. https://doi.org/10.1007/s00604-018-2759-9

    Article  CAS  Google Scholar 

  16. Szychowski B, Leng H, Pelton H, Daniel MC (2018) Controlled etching and tapering of Au nanorods using cysteamine. Nanoscale 10:16830–16838. https://doi.org/10.1039/c8nr05325a

    Article  CAS  PubMed  Google Scholar 

  17. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of Electrons and Fragmentation. J Phys Chem B 102:3123–3128. https://doi.org/10.1021/jp980009b

    Article  CAS  Google Scholar 

  18. Jeon JW, Yoon S, Choi HW, Kim J, Farson D, Cho SH (2018) The effect of laser pulse widths on laser—Ag nanoparticle interaction: femto- to nanosecond lasers. Appl Sci 8:112–125. https://doi.org/10.3390/app8010112

    Article  CAS  Google Scholar 

  19. Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232. https://doi.org/10.1021/jp983503o

    Article  CAS  Google Scholar 

  20. Pyatenko A, Wang H, Koshizaki N, Tsuji T (2013) Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photonics Rev 7:596–604. https://doi.org/10.1002/lpor.201300013

    Article  CAS  Google Scholar 

  21. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170. https://doi.org/10.1021/jp983141k

    Article  CAS  Google Scholar 

  22. Fales AM, Vogt WC, Pfefer TJ, Ilev IK (2017) Quantitative evaluation of nanosecond pulsed laser-induced photomodifcation of plasmonic gold nanoparticles. Sci Rep 7:15704–15715. https://doi.org/10.1038/s41598-017-16052-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaudhari K, Subramanian V, Ahuja T, Murugesan V, Ganayee MA, Thundat T, Pradeep T (2019) Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping. Nanoscale 11:321–330. https://doi.org/10.1039/c8nr06497k

    Article  CAS  Google Scholar 

  24. Biswas S, Kole AK, Tiwary CS, Kumbhakar PK (2016) Observation of size-dependent electron–phonon scattering and temperature-dependent photoluminescence quenching in triangular-shaped silver nanoparticles. Plasmonics 11:593–600. https://doi.org/10.1007/s11468-015-0072-6

  25. Tang B, Xu S, An J, Zhao B, Xu W, Lombard RJ (2009) Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys Chem Chem Phys 11:10286-10292. https://doi.org/10.1039/b912985e

  26. Rubio GG, Martínez AG, Liz-Marzan LM (2016) Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res 49:678–686. https://doi.org/10.1021/acs.accounts.6b00041

    Article  CAS  Google Scholar 

  27. Jiang L, Wang AD, Li BO, Cui TH, Lu YF (2018) Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modelling, method, measurement and application. Light: Sci Appl 7:17134–17161. https://doi.org/10.1038/lsa.2017.134

    Article  CAS  Google Scholar 

  28. Ruditskiy A, Xia Y (2017) The science and art of carving metal nanocrystals. ACS Nano 11:23–27. https://doi.org/10.1021/acsnano.6b08556

    Article  CAS  PubMed  Google Scholar 

  29. Abkhalimov EV, Timofeev AA, Ershov BG (2018) Electrochemical mechanism of silver nanoprisms transformation in aqueous solutions containing the halide ions. J Nanopart Res 20:26–38. https://doi.org/10.1007/s11051-018-4133-6

    Article  CAS  Google Scholar 

  30. Gangishetty MK, Scott RWJ, Kelly TL (2016) Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles. Dalton Trans 45:9827–9834. https://doi.org/10.1039/c6dt00169f

    Article  CAS  PubMed  Google Scholar 

  31. Marzbanrad E, Rivers G, Peng P, Zhaoac B, Zhou NY (2015) How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: the case of silver nanobelts and pentagonal silver nanowires. Phys Chem Chem Phys 17:315–324. https://doi.org/10.1039/c4cp04129a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KM is thankful to Dr. A. K. Kole and Dr. R. Sarkar for the helpful discussions.

Funding

Authors are grateful to CSIR (project Grant No: 03(1328)/14/EMR-II dt. 03.11.2014). KM is thankful to UGC, GOI for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathik Kumbhakar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, K., Biswas, S. & Kumbhakar, P. Nanosecond Laser–Assisted Tuning of the Plasmon Band of Triangular-Shaped Ag Nanostructures and Development of a Broadband Visible-Near Infrared Light Absorber. Plasmonics 15, 145–153 (2020). https://doi.org/10.1007/s11468-019-01016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01016-6

Keywords

Navigation