Skip to main content

Advertisement

Log in

Tunable Charge Transfer and Dual Plasmon Resonances of Au@WO3−x Hybrids and Applications in Photocatalytic Hydrogen Generation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We synthesized Au@WO3−x hybrids with dual plasmon resonances in visible and near-infrared (NIR) regions induced by two counterparts for enhancing photocatalytic activity. Au cores slightly influence hetero-morphology, significantly modify semiconductor plasmon, and prominently enhance H2 generation of WO3−x shells. As atom ratio of ρW:Au increases from 2 to 10, visible plasmon resonance is weakened with peak blueshifting from 540 to 490 nm, while NIR plasmon resonance strength prominently increases, and eventually average enhancement factor of photocatalytic H2 generation of the Au@WO3−x hybrids with white light illuminations increases from 1.76 to 2.85. Furthermore, the wavelength dependence of H2 generation reveals that the dominant physical mechanism of enhancing the photocatalytic activity of the hybrids is varied from excitation energy transfer to electron transfer from Au cores to WO3−x shells as ρW:Au increases. The construction of this metal-semiconductor hetero-nanostructure with dual plasmon resonances has immediate importance for the applications in solar energy conversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang ZF, Song J, Pan L, Zhang X, Wang L, Zou JJ (2015) Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater 27:5309–5327

    Article  CAS  PubMed  Google Scholar 

  2. Kim S, Kim J M, Park J E, Nam J M (2018) Nonnoble-metal-based plasmonic nanomaterials: recent advances and future perspectives Adv Mater 1704528

  3. Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, Ko G, Kim BH, Kim D, Hyeon T (2018) Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles Adv Mater 1704290

  4. Chang K, Hai X, Ye J (2016) Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv Energy Mater 6:1502555

    Article  CAS  Google Scholar 

  5. Ma F, Wu Y, Shao Y, Zhong Y, Lv J, Hao X (2016) 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets. Nano Energy 27:466–474

    Article  CAS  Google Scholar 

  6. Ma L, Chen K, Nan F, Wang JH, Yang DJ, Zhou L, Wang QQ (2016) Improved hydrogen production of Au-Pt-CdS hetero-nanostructures by efficient plasmon-induced multipathway electron transfer. Adv Funct Mater 26:6076–6083

    Article  CAS  Google Scholar 

  7. Li F, Chen L, Xue M, Williams T, Zhang Y, MacFarlane DR, Zhang J (2017) Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 31:270–277

    Article  CAS  Google Scholar 

  8. Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S (2016) Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24:1–9

    Article  CAS  Google Scholar 

  9. Chen K, Ding SJ, Luo ZJ, Pan GM, Wang JH, Liu J, Zhou L, Wang QQ (2018) Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer. Nanoscale 10:4130–4137

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Jiang X, Liu B, Guo L, Lu N, Wang L, Huang J, Liu K, Dong B (2018) IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv Mater 30:1705221

    Article  CAS  Google Scholar 

  11. Jo S, Verma P, Kuwahara Y, Mori K, Choi W, Yamashita H (2017) Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO2. J Mater Chem A 5:21883–21892

    Article  CAS  Google Scholar 

  12. Yuan K, Cao Q, Lu HL, Zhong M, Zheng X, Chen HY, Wang T, Delaunay JJ, Luo W, Zhang L, Wang YY, Deng Y, Ding SJ, Zhang DW (2017) Oxygen-deficient WO3−x@TiO2−x core–shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. J Mater Chem A 5:14697–14706

    Article  CAS  Google Scholar 

  13. Yin XL, He GY, Sun B, Jiang WJ, Xue DJ, Xia AD, Wan LJ, Hu JS (2016) Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 28:319–329

    Article  CAS  Google Scholar 

  14. Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J, Zhang P, Guo Z, Liu Y (2013) Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5:606–618

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Yu S, Zhu W, Yan X (2015) Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere-W18O49 nanowire bundle heterojunction. Appl Catal A-Gen 500:30–39

    Article  CAS  Google Scholar 

  16. Huang ZF, Zou JJ, Pan L, Wang S, Zhang X, Wang L (2014) Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Appl Catal B Environ:147167–147174

  17. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207

    Article  CAS  PubMed  Google Scholar 

  18. Cen CL, Yi Z, Zhang G, Zhang YB, Liang CP, Chen XF, Tang YJ, Ye X, Yi YG, Wang JQ, Hua JJ (2019) Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Respir Physiol 14:102463

    Google Scholar 

  19. Huang J, Niu G, Yi Z, Chen XF, Zhou ZG, Ye X, Tang YJ, Yi Y, Duan T, Yi YG (2019) High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials. Phys Scr 94:085805

    Article  CAS  Google Scholar 

  20. Yi Z, Huang J, Cen CL, Chen XF, Zhou ZG, Tang YJ, Wang BY, Yi YG, Wang J, Wu PH (2019) Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Respir Physiol 14:102367

    Google Scholar 

  21. Zhang Y, Cen CL, Liang CP, Yi Z, Chen XF, Li MW, Zhou ZG, Tang YJ, Yi YG, Zhang GF (2019) Dual-band switchable terahertz metarmaterial absorber based on metal nanostructure. Respir Physiol 14:102422

    Google Scholar 

  22. Hai G, Huang J, Cao L, Jie Y, Li J, Wang X (2016) Shape evolution of hierarchical W18O49 nanostructures: a systematic investigation of the growth mechanism, properties and morphology-dependent photocatalytic activities. Nanomaterials 6

  23. Huang ZF, Song J, Pan L, Lv F, Wang Q, Zou JJ, Zhang X, Wang L (2014) Mesoporous W18O49 hollow spheres as highly active photocatalysts. Chem Commun 50:10959–10962

    Article  CAS  Google Scholar 

  24. Song K, Xiao F, Zhang L, Yue F, Liang X, Wang J, Su X (2016) W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light. J Mol Catal A Chem 418-419:95–102

    Article  CAS  Google Scholar 

  25. Zhang Z, Huang J, Fang Y, Zhang M, Liu K, Dong B (2017) A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv Mater 29:1606688

    Article  CAS  Google Scholar 

  26. Zhang Z, Liu Y, Fang Y, Cao B, Huang J, Liu K, Dong B (2018) Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for effcient H2 evolution from ammonia borane. Adv Sci 5:1800748

  27. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita HA (2015) Plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 27:4616–4621

    Article  CAS  PubMed  Google Scholar 

  28. Yan J, Wang T, Wu G, Dai W, Guan N, Li L, Gong J (2015) Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv Mater 27:1580–1586

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136:586–589

    Article  CAS  PubMed  Google Scholar 

  30. Zhang N, Jalil A, Wu D, Chen S, Liu Y, Gao C, Ye W, Qi Z, Ju H, Wang C, Wu X, Song L, Zhu J, Xiong Y (2018) Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J Am Chem Soc 140:9434–9443

    Article  CAS  PubMed  Google Scholar 

  31. Sen S, Kanitkar P, Sharma A, Muthe KP, Rath A, Deshpande SK, Kaur M, Aiyer RC, Gupta SK, Yakhmi JV (2010) Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sensor Actuat B Chem 147:453–460

  32. Zhu LF, She JC, Luo JY, Deng SZ, Chen J, Ji XW, Xu NS (2011) Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sensor Actuat B Chem 153:354–360

  33. Huang ZF, Song J, Pan L, Jia X, Li Z, Zou JJ, Zhang X, Wang L (2014) W18O49 nanowire alignments with a BiOCl shell as an efficient photocatalyst. Nanoscale 6:8865–8872

    Article  CAS  PubMed  Google Scholar 

  34. Jin L, Zheng X, Liu W, Cao L, Cao Y, Yao T, Wei S (2017) Integration of plasmonic and amorphous effects in MoO3-x spheres for efficient photoelectrochemical water oxidation. J Mater Chem A 5:12022–12026

    Article  CAS  Google Scholar 

  35. Hu D, Diao P, Xu D, Wu Q (2016) Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res 9:1735–1751

    Article  CAS  Google Scholar 

  36. Nayak AK, Sohn Y, Pradhan D (2017) Facile green synthesis of WO3·H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance. Cryst Growth Des 17:4949–4957

    Article  CAS  Google Scholar 

  37. Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem Int Ed 118:267–271

    Article  Google Scholar 

  38. Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208

    Article  CAS  PubMed  Google Scholar 

  39. Su C, Lin H (2009) Direct route to tungsten oxide nanorod bundles: microstructures and electro-optical properties. J Phys Chem C 113:4042–4046

    Article  CAS  Google Scholar 

  40. Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134:3995–3998

    Article  CAS  PubMed  Google Scholar 

  41. Alsaif MM, Latham K, Field MR, Yao DD, Medhekar NV, Beane GA, Kaner RB, Russo SP, Ou JZ, Kalantar-zadeh K (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937

    Article  CAS  PubMed  Google Scholar 

  42. Liu W, Xu Q, Cui W, Zhu C, Qi Y (2017) CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew Chem Int Ed 56:1600–1604

    Article  CAS  Google Scholar 

  43. Liu J, Margeat O, Dachraoui W, Liu X, Fahlman M, Ackermann J (2014) Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity. Adv Funct Mater 24:6029–6037

    Article  CAS  Google Scholar 

  44. Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C (2012) Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed 51:2395–2399

    Article  CAS  Google Scholar 

  45. Lou Z, Gu Q, Xu L, Liao Y, Xue C (2015) Surfactant-free synthesis of plasmonic tungsten oxide nanowires with visible-light-enhanced hydrogen generation from ammonia borane. Chem Asian J 10:1291–1294

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, Hu J, Wang H, Liu J, Zhu M, Zhao D (2013) Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater 25:2095–2100

    Article  CAS  PubMed  Google Scholar 

  47. Guo C, Yin S, Huang Y, Dong Q, Sato T (2011) Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 27:12172–12178

    Article  CAS  PubMed  Google Scholar 

  48. Zhang N, Zhao Y, Lu Y, Zhu G (2017) Preparation of aligned nanowire clusters with high photocatalytic activity. Mater Sci Eng B 218:51–58

    Article  CAS  Google Scholar 

  49. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Chem Soc 88:1684–1686

    CAS  Google Scholar 

  50. Srivastav AK, Basu J, Kashyap S, Chawake N, Yadav D, Murty BS (2016) Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces. Scr Mater 115:28–32

    Article  CAS  Google Scholar 

  51. Moshofsky B, Mokari T (2012) Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism. Chem Mater 25:1384–1391

    Article  CAS  Google Scholar 

  52. Pfeifer J, Badaljan E, Tekula-Buxbaum P, Kovfics T, Geszti O, Tdth AL, Lunk HJ (1996) Growth and morphology of W18O49 crystals produced by microwave decomposition of ammonium paratungstate. J Cryst Growth 169:727–733

    Article  CAS  Google Scholar 

  53. Polleux J, Pinna N, Antonietti M, Niederberger M (2005) Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J Am Chem Soc 127:15595–15601

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Bando Y, Golber D (2003) Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv Mater 15:1294–1296

    Article  CAS  Google Scholar 

  55. Lin R, Wan J, Xiong Y, Wu K, Cheong WC, Zhou G, Wang D, Peng Q, Chen C, Li Y (2018) Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis. J Am Chem Soc 140:9078–9082

    Article  CAS  PubMed  Google Scholar 

  56. Tian Y, Cong S, Su W, Chen H, Li Q, Geng F, Zhao Z (2014) Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett 14:2150–2156

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Cushing KS, Meng F, Senty TR, Bristow AD, Wu NQ (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics 9:601–607

    Article  CAS  Google Scholar 

  58. Zhang Z, Huang J, Zhang M, Yuan Q, Dong B (2015) Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl Catal B Environ 163:298–305

    Article  CAS  Google Scholar 

  59. Zhang Z, Liu K, Feng Z, Bao Y, Dong B (2016) Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci Rep 6:19221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murgai V, Raaen S, Strongin M, Garrett RF (1986) Core-level and valence-band photoemission study of granular platinum films. Phys Rev B 33:4345–4348

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303402), the National Natural Science Foundation of China (Grant No. 91750113, 11874293 and 11674254), and Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB572).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Jing Ding, Li Zhou or Qu-Quan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 3054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Gong, LL., Ding, SJ. et al. Tunable Charge Transfer and Dual Plasmon Resonances of Au@WO3−x Hybrids and Applications in Photocatalytic Hydrogen Generation. Plasmonics 15, 21–29 (2020). https://doi.org/10.1007/s11468-019-01002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01002-y

Keywords

Navigation