Tunable Hybrid Gap Surface Plasmon Polariton Waveguides with Ultralow Loss Deep-Subwavelength Propagation

Abstract

Exploring hybrid gap surface plasmon polariton waveguides (HGSPPWs) is an important milestone in developing the next-generation, nanoscale integrated photonic circuit technology. To advance their potential applications, HGSPPWs are required to have tunable capability, highly reliable, simple fabrication process, and feasible integration. In this paper, we propose two tunable HGSPPWs fulfilling the requirements. The proposed HGSPPWs consist of a metallic wedge laterally coupled with a dielectric waveguide. The modal characteristics of HGSPPWs are investigated at the optical telecommunication wavelength, which shows the modal characteristics could be effectively controlled by tuning the key geometry parameters and structure of HGSPPWs. The propagation length could achieve the centimeter scale while maintaining the propagation mode size at the deep-subwavelength scale (~ λ2/105). The studies on fabrication tolerance and waveguide crosstalk show their robust property for practical implementations. The effective tunable mechanism is also proposed and studied, which shows remarkable feasibility to realize multifunctional plasmon-based photonic components. Compared with the conventional HGSPPWs, the proposed HGSPPWs exhibit superior features in ultralow loss deep-subwavelength light guiding, are highly reliable, and are easy to integrate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  2. 2.

    Wei H, Xu H (2012) Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 1(2):155–169

    Article  Google Scholar 

  3. 3.

    Gao Y, Gan Q, Xin Z, Cheng X, Bartoli FJ (2011) Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5(12):9836–9844

    CAS  Article  Google Scholar 

  4. 4.

    Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294

    CAS  Article  Google Scholar 

  5. 5.

    Kress SJ, Antolinez FV, Richner P, Jayanti SV, Kim DK, Prins F, Riedinger A, Fischer MP, Meyer S, McPeak KM (2015) Wedge waveguides and resonators for quantum plasmonics. Nano Lett 15(9):6267–6275

    CAS  Article  Google Scholar 

  6. 6.

    Moreno E, Rodrigo SG, Bozhevolnyi SI, Martín-Moreno L, García-Vidal F (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100(2):023901

    Article  Google Scholar 

  7. 7.

    Boltasseva A, Volkov VS, Nielsen RB, Moreno E, Rodrigo SG, Bozhevolnyi SI (2008) Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 16(8):5252–5260

    Article  Google Scholar 

  8. 8.

    Lotan O, Smith CL, Bar-David J, Mortensen NA, Kristensen A, Levy U (2016) Propagation of channel plasmons at the visible regime in aluminum V-groove waveguides. Acs Photonics 3(11):2150–2157

    CAS  Article  Google Scholar 

  9. 9.

    Dionne J, Sweatlock L, Atwater H, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3):035407

    Article  Google Scholar 

  10. 10.

    Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47(26):1927–1930

    CAS  Article  Google Scholar 

  11. 11.

    Dintinger J, Martin OJ (2009) Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness. Opt Express 17(4):2364–2374

    CAS  Article  Google Scholar 

  12. 12.

    Pile DF, Ogawa T, Gramotnev DK, Okamoto T, Haraguchi M, Fukui M, Matsuo S (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87(6):061106

    Article  Google Scholar 

  13. 13.

    Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Zhang Z (2017) Ultra-subwavelength and low loss in v-shaped hybrid plasmonic waveguide. Plasmonics 12(1):59–63

    CAS  Article  Google Scholar 

  15. 15.

    Zhang B, Bian Y, Ren L, Guo F, Tang S-Y, Mao Z, Liu X, Sun J, Gong J, Guo X (2017) Hybrid dielectric-loaded nanoridge plasmonic waveguide for low-loss light transmission at the subwavelength scale. Sci Rep 7:40479

    CAS  Article  Google Scholar 

  16. 16.

    Gao L, Tang L, Hu F, Guo R, Wang X, Zhou Z (2012) Active metal strip hybrid plasmonic waveguide with low critical material gain. Opt Express 20(10):11487–11495

    CAS  Article  Google Scholar 

  17. 17.

    Bian Y, Ren Q, Kang L, Yue T, Werner PL, Werner DH (2018) Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides. Photonics Res 6(1):37–45

    CAS  Article  Google Scholar 

  18. 18.

    Bian Y, Gong Q (2015) Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale. Nanoscale 7(10):4415–4422

    CAS  Article  Google Scholar 

  19. 19.

    Dai D, Shi Y, He S, Wosinski L, Thylen L (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 19(14):12925–12936

    CAS  Article  Google Scholar 

  20. 20.

    Gui C, Wang J (2015) Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area. Sci Rep 5:11457

    Article  Google Scholar 

  21. 21.

    Bian Y, Gong Q (2014) Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges. Laser Photon Rev 8(4):549–561

    CAS  Article  Google Scholar 

  22. 22.

    Ding L, Qin J, Xu K, Wang L (2016) Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance. Opt Express 24(4):3432–3440

    Article  Google Scholar 

  23. 23.

    Ma Y, Farrell G, Semenova Y, Wu Q (2015) A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement. J Lightwave Technol 33(18):3827–3835

    CAS  Article  Google Scholar 

  24. 24.

    Hao R, Cassan E, Xu Y, Qiu M, Wei X-C, Li E-P (2013) Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron 19(3):4601809–4601809

    Article  Google Scholar 

  25. 25.

    Gosciniak J, Bozhevolnyi SI, Andersen TB, Volkov VS, Kjelstrup-Hansen J, Markey L, Dereux A (2010) Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt Express 18(2):1207–1216

    CAS  Article  Google Scholar 

  26. 26.

    Pitilakis A, Kriezis EE (2011) Longitudinal 2 x 2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides. J Lightwave Technol 29(17):2636–2646

    Article  Google Scholar 

  27. 27.

    Weeber J-C, Bernardin T, Nielsen MG, Hassan K, Kaya S, Fatome J, Finot C, Dereux A, Pleros N (2013) Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides. Opt Express 21(22):27291–27305

    Article  Google Scholar 

  28. 28.

    Rudé M, Simpson RE, Quidant R, Pruneri V, Renger J (2015) Active control of surface plasmon waveguides with a phase change material. ACS Photonics 2(6):669–674

    Article  Google Scholar 

  29. 29.

    Zografopoulos DC, Swillam MA, Shahada LA, Beccherelli R (2016) Hybrid electro-optic plasmonic modulators based on directional coupler switches. Appl Phys A 122(4):344

    Article  Google Scholar 

  30. 30.

    MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3(1):55–58

    CAS  Article  Google Scholar 

  31. 31.

    Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1(7):402–406

    CAS  Article  Google Scholar 

  32. 32.

    Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8(5):1506–1510

    CAS  Article  Google Scholar 

  33. 33.

    Sun X, Thylén L, Wosinski L (2017) MEMS tunable hybrid plasmonic-Si waveguide. In: Optical Fiber Communications Conference and Exhibition (OFC). IEEE, pp 1–3

  34. 34.

    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    CAS  Article  Google Scholar 

  35. 35.

    Tobing LY, Tjahjana L, Hua Zhang D (2012) Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform. Appl Phys Lett 101(4):041117

    Article  Google Scholar 

  36. 36.

    Zhu S, Lo G-Q, Kwong D-L (2012) Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform. IEEE Photon Technol Lett 24(14):1224–1226

    CAS  Article  Google Scholar 

  37. 37.

    Xu Q, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. nature 435(7040):325–327

    CAS  Article  Google Scholar 

  38. 38.

    Akihama Y, Hane K (2012) Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers. Light Sci Appl 1(6):e16

    Article  Google Scholar 

  39. 39.

    Abe S, Chu MH, Sasaki T, Hane K (2014) Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photon Technol Lett 26(15):1553–1556

    Article  Google Scholar 

  40. 40.

    Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y (2015) Plasmofluidics: merging light and fluids at the micro-/nanoscale. Small 11(35):4423–4444

    CAS  Article  Google Scholar 

  41. 41.

    Boales JA, Mateen F, Mohanty P (2017) Micromechanical resonator driven by radiation pressure force. Sci Rep 7(1):16056

    Article  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number “103.02-2015.86.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hoang Manh Chu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Nguyen, S.N., Trinh, M. et al. Tunable Hybrid Gap Surface Plasmon Polariton Waveguides with Ultralow Loss Deep-Subwavelength Propagation. Plasmonics 14, 1751–1763 (2019). https://doi.org/10.1007/s11468-019-00971-4

Download citation

Keywords

  • Tunable hybrid gap plasmonic waveguide
  • Nanoelectromechanical tunable hybrid plasmonic waveguide
  • Ultralow loss deep-subwavelength propagation
  • Planar fabrication technology
  • Reliable integration