Skip to main content
Log in

Microring Switching Control Using Plasmonic Ring Resonator Circuits for Super-Channel Use

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The multi-wavelength selection and switching system using the hybrid plasmonic add-drop ring resonator (HPARR) for optical communication is proposed for multi-carrier super-channel-based designed. The plasmonic polariton technique applied in the ring resonator mode to the alternate waveguide interferometer switches the multi-wavelength laser emission in the various ranges. The combination of curvature-coupled plasmon ring and substances with different refractive index allows switching the multi-wavelength emission to shorter the free spectrum range (FSR) and specific wavelengths, without an applied pump signal or adjusted the ring size. It is suitable for the super-channel of wavelength division multiplex (WDM) in the future optical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kish F et al (2018) System-on-chip photonic integrated circuits. IEEE J Sel Top Quantum Electron 24(1):6100120

    Article  Google Scholar 

  2. Guiomar FP, Amado SB, Ferreira PM, Reis JD, Rossi SM, Chiuchiarelli A, Oliveira JD, Teixeira AL, Pinto AN (2015) Multicarrier digital back propagation for 400G optical super-channels. J Lightwave Technol 34(8):1896–1907

    Article  Google Scholar 

  3. Geng M, Jia L, Zhang L, Yang L, Chen P, Wang T, Liu Y (2009) Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide. Opt Express 17(7):5502–5516

    Article  CAS  Google Scholar 

  4. Deore A, Turkcu O, Ahuja S, Hand SJ, Melle S (2012) Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks. IEEE Commun Mag 50:179–187

    Article  Google Scholar 

  5. Roy S, et al (2013) Evaluating efficiency of multi-layer switching in future optical transport networks. Proc. 2013 Optical Fiber Communications Conference/National Fiber Optic Engineers Conference, Anaheim, CA, March17–21

  6. Strasser TA, Wagener JL (2010) Wavelength-selective switches for ROADM applications. IEEE J Sel Top Quantum Electron 16(5):1150–1157

    Article  CAS  Google Scholar 

  7. Peter J, David T (2017) From scaling disparities to integrated parallelism: a decathlon for a decade. J Lightwave Technol 35(5):1099–1115

    Article  Google Scholar 

  8. Sun X, Chen X, Yan M, Qiu M, Thylén L, Wosinski L (2016) All-optical switching using a hybrid plasmonic donut resonator with photothermal absorber. IEEE Photon Technol Lett 28(15):1609–1612

    Article  CAS  Google Scholar 

  9. Shaikh SA (2017) Emerging III-V semiconductor compound materials for future high-speed and low power applications: a review and challenges. Int J Innov Res Sci Eng Technol 6:1929–1935

    Google Scholar 

  10. Maier SA (2006) Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J Sel Top Quantum Electron 12(6):1214–1220

    Article  CAS  Google Scholar 

  11. Yang R, Lu Z (2012) Subwavelength plasmonic waveguides and plasmonic materials. Int J Optics, Article number 258103. https://doi.org/10.1155/2012/258013

    Article  Google Scholar 

  12. Amirhosseini A, Reza Safian R (2013) A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate. IEEE Trans Nanotechnol 12(6):1031–1036

    Article  CAS  Google Scholar 

  13. Chamanmotlagh A (2015) Analysis of low-loss hybrid silicon plasmon waveguide for telecommunications applications. Int J Electron Opt 126(21):2854–2857

    Article  CAS  Google Scholar 

  14. Hsieh C, Chu Y, Huang M, Kuo C, Leou K (2015) Design of a low loss silicon based hybrid dielectric-loaded plasmonic waveguide and a compact high performance optical resonator. PIER M 42:135–144

    Article  Google Scholar 

  15. Alam MZ, Aitchison JS, Mojahedi M (2013) Theoretical analysis of hybrid plasmonic waveguide. IEEE J Sel Top Quantum Electron 19(3):4602008

    Article  Google Scholar 

  16. Caspers JN, Aitchison JS, Mojahedi M (2013) Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Opt Lett 38(20):4054–4057

    Article  CAS  Google Scholar 

  17. Sun X, Wosinski L (2015) Double-slot hybrid plasmonic cavity used for phase modulation and sensing. In: Optical fiber communications conference and exhibition (OFC), volume W2A, vol 41. https://doi.org/10.1364/OFC.2015.W2A.41

    Chapter  Google Scholar 

  18. Sun X, Dai D, Thylén L, Wosinski L (2015) Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators. Photonics 2(4):1116–1130

    Article  Google Scholar 

  19. Špačková B, Wrobel P, Bocková M (2016) Optical biosensors based on plasmonic nanostructures: a review. Proc IEEE 104(12):2380–2408

    Article  Google Scholar 

  20. Yee KS (1966) Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 4(3):302–307

    Google Scholar 

  21. Berenger LP (1996) Perfectly matched layer for the FDTD solution of wave-structure interaction problem. IEEE Trans Antennas Propag 44(1):110–118

    Article  Google Scholar 

  22. Okamoto K (2000) Fundamentals of optical waveguides. Academic, Cambridge

    Google Scholar 

  23. Hagness SC, Rafizadeh D, Ho ST, Taflove A (1997) FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators. IEEE J Lightwave Technol 15(11):2145–2165

    Article  Google Scholar 

  24. Rafizadeh D, Zhang JP, Hagness SC, Taflove A, Stair KA, Ho ST, Tiberio RC (1997) Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range. Opt Lett 22(16):1244–1246

    Article  CAS  Google Scholar 

  25. Little BE, Foresi JS, Steinmeyer G, Thoen ER, Chu ST, Haus HA, Ippen EP, Kimerling LC, Greene W (1998) Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon Technol Lett 10(4):549–551

    Article  Google Scholar 

  26. Thammawongsa N, Luangxaysana K, Soysouvanh S, Mitatha S (2015) The simulation of surface plasmon polariton based photonic integrated devices by modified add-drop. The 34th JSST Annual Conference: International Conference on Simulation Technology (JSST2015) 1, pp 118–124

Download references

Acknowledgments

P. Yupapin would like to acknowledge the research facilities from Ton Duc Thang University, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preecha Yupapin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunsiri, S., Thammawongsa, N., Threepak, T. et al. Microring Switching Control Using Plasmonic Ring Resonator Circuits for Super-Channel Use. Plasmonics 14, 1669–1677 (2019). https://doi.org/10.1007/s11468-019-00965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00965-2

Keywords

Navigation