Skip to main content
Log in

Enhanced Optical Transmission Assisted Near-Infrared Plasmonic Optical Filter via Hybrid Subwavelength Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Enhanced optical transmission (EOT), which results from the incident light interacting with the subwavelength nanostructures patterned in a metallic film, showcases the excitation of surface plasmon modes on both surfaces of the metallic film and their intercoupling effects. Here, we numerically study the EOT phenomenon from the incident light acting on the periodic subwavelength hybrid arrays in a metallic film, which contains annular concentric core and aperture unit structure undergoing multiple geometrical configurations. It is shown that several configurations, which consist of a core with a different number of apertures, of the unit structure, are possible to facilitate the intercoupling between the surface plasmon polariton resonance mode of the core and the localized surface plasmon resonance mode of the aperture. Moreover, taking advantage of the EOT effect realized in the periodic structure arrays including a concentric core with triple-aperture unit structure, we propose a plasmonic optical filter (POF) in the near-infrared region. By adjusting both the periods and the width difference between the nearest-neighbor two apertures of the unit structure, the realization of near-infrared POF accompanies with tunable positions and amplitudes of the EOT peaks. Additionally, these behaviors could also be extended to the case of a concentric core with a multiple-aperture unit structure for actualizing near- or mid-infrared POF effect. Our results promise new avenues for plasmonic devices and enrich the application range of metallic structures in the field of optical communications and information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779–6782

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature(London) 424:824–830

    Article  CAS  Google Scholar 

  3. Lin L, Roberts A (2011) Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances. Opt Express 19(3):2626–2633

    Article  CAS  Google Scholar 

  4. Lei CX, Tang ZX, Wang SH, Li DY, Chen LY, Tang SL, Du YW (2017) Plasmon resonance enhanced optical transmission and magneto-optical Faraday effects in nanohole arrays blocked by metal antenna. Opt Commun 394:41–49

    Article  CAS  Google Scholar 

  5. Hu Y, Liu GQ, Liu ZQ, Liu XS, Zhang XN, Cai ZJ, Liu ML, Gao HG, Gu G (2015) Extraordinary optical transmission in metallic nanostructures with a plasmonic nanohole array of two connected slot antennas. Plasmonics 10(2):483–488

    Article  CAS  Google Scholar 

  6. Kyoung J, Roh YG (2016) Extraordinary optical transmission induced by strong plasmon-phonon coupling: shape resonance versus non-shape resonance. J Appl Phys 120(9):193104–193111

    Article  Google Scholar 

  7. Sheng JB, Yuan Z, Chen ZY, Zhu WH, Guo W, He HY, Wang XL (2017) Dependence of surface plasmons on unit structure edge sharp features. Plasmonics 12(3):795–801

    Article  CAS  Google Scholar 

  8. Zhang XN, Liu GQ, Liu ZQ, Cai ZJ, Hu Y, Liu XS, Fu GL, Gao HG, Huang S (2015) Effects of compound rectangular subwavelength hole arrays on enhancing optical transmission. IEEE Photon J 7(1):4500408

    Google Scholar 

  9. Garcia-Vidal FJ, Moreno LM, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82(1):729–787

    Article  Google Scholar 

  10. Wang J, Jiang XX, Xia LP, Tang LL, Hu S, Lv JT, Zhao HQ, Si GY, Shi RY (2016) Fabrication and optical measurement of double-overlapped annular apertures. Opt Mater 60:13–16

    Article  CAS  Google Scholar 

  11. Wu S, Zhang Z, Zhang Y, Zhang KY, Zhou L, Zhang XJ, Zhu YY (2013) Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes. Phys Rev Lett 110(20):207401–207406

    Article  Google Scholar 

  12. Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J (2015) Electrically controlled plasmonic switches and modulators. IEEE J Sel Top Quantum 21(4):4600408–4600416

    Article  Google Scholar 

  13. Sun TM, Deng ZX, Sheng JB, Chen ZY, Zhu WH, Guo W, Wang XL (2017) A compact optical switch via plasmonics of subwavelength circular-sharp hole arrays in metal films. Ann Phys (Berlin) 530(3):1–6

    Google Scholar 

  14. Yu Z, Liang RS, Chen PX, Huang QD, Huang TT, Xu XK (2012) Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities. Plasmonics 10(1):603–607

    Article  Google Scholar 

  15. Chen L, Zhang WG, Zhang Z, Liu YJ, Sieg J, Zhang LY, Zhou Q, Wang L, Wang B, Yan TY (2014) Design for a single-polarization photonic crystal fiber wavelength filter based on hybrid-surface plasmon resonance. IEEE Photon J 6(4):2200909

    Article  Google Scholar 

  16. Shen XR, Wang YK, Chen QS, Wu XY (2015) Detuned square ring resonators for multiple plasmon-induced transparencies in metal-insulator-metal waveguide. Appl Phys Express 8(11):112201–112205

    Article  Google Scholar 

  17. Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmonics 5(4):417–422

    Article  CAS  Google Scholar 

  18. Gao X, Shi JH, Shen XP, Ma HF, Jiang WX, Li LM, Cui TJ (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency filter in microwave frequencies. Appl Phys Lett 102(15):151912–151916

    Article  Google Scholar 

  19. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite difference time-domain method (Artech House, 2000)

  20. Besbes M, Hugonin JP, Lalanne P, Haver SV, Janssen OTA, Nugrowati AM, Xu M, Pereira SF, Urbach HP, Nes ASVD, Bienstman P, Granet G, Moreau A, Helfert S, Sukharev M, Seideman T, Baida FI, Guizal B, Van Labeke D (2007) Numerical analysis of a slit-groove diffraction problem. J Eur Opt Soc-Rapid 2:07022

    Article  Google Scholar 

  21. Ruan ZC, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96(23):233901

    Article  Google Scholar 

  22. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7(2):90–96

    Article  Google Scholar 

  23. Zhang XN, Liu GQ, Hu Y, Liu ZQ, Chen YH, Cai ZJ, Liu XS, Gu G, Fu GL (2014) Tunable extraordinary optical transmission in a metal film perforated with two-level subwavelength cylindrical holes. Plasmonics 9(5):1149–1153

    Article  CAS  Google Scholar 

  24. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  25. Shi HF, Wang CT, Du CL, Luo XG, Dong XC, Gao HT (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13(18):6815–3820

    Article  Google Scholar 

  26. Bliokh KY, Bliokh YP, Freilikher V, Savel’ev S, Nori F (2008) Unusual resonators: plasmonics, metamaterials, and random media. Rev Mod Phys 80(4):1201–1213

    Article  Google Scholar 

  27. Guo YH, Yan LS, Pan W, Luo B, Wen KH, Guo Z, Li HY, Luo XG (2011) A plasmonic filter based on slot cavity. Opt Express 19(15):13831–13838

    Article  Google Scholar 

  28. Pelzman C, Cho S-Y (2015) Polarization-selective optical transmission through a plasmonic metasurface. Appl Phys Lett 106(25):251101

    Article  Google Scholar 

  29. Cetin AE, Kaya S, Mertiri A, Aslan E, Erramilli S, Altug H, Turkmen M (2015) Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics Nanostruct Fundam Appl 15:73–80

    Article  Google Scholar 

  30. Yuan JH, Sang XZ, Wu Q, Zhou GY, Li F, Zhou X, Yu CX, Wang KR, Yan BB, Han Y, Tam HY, Wai PKA (2015) Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber. Opt Lett 40(7):1338–1341

    Article  Google Scholar 

  31. Zheng YJ, Liu H, Wang SM, Li T, Cao JX, Li L, Zhu C, Wang Y, Zhu SN, Zhang X (2011) Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab. Appl Phys Lett 98(8):083117

    Article  Google Scholar 

  32. Huang WX, Wang QJ, Yin XG, Huang CP, Huang H, Wang YM, Zhu YY (2011) Optical resonances in a composite asymmetric plasmonic nanostructure. J Appl Phys 109(11):114310

    Article  Google Scholar 

  33. Lee JW, Seo MA, Kang DH, Khim KS, Jeoung SC, Kim DS (2007) Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys Rev Lett 99(13):137401

    Article  CAS  Google Scholar 

  34. Kumar LKS, Lesuffleur A, Hughes MC, Gordon R (2006) Double nanohole apex-enhanced transmission in metal films. Appl Phys B Lasers Opt 84(1–2):25–28

    Article  CAS  Google Scholar 

  35. Jakovljević MM, Isić G, Dastmalchi B, Bergmair I, Hingerl K, Gajić R (2015) Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays. Appl Phys Lett 106(14):143106

    Article  Google Scholar 

  36. Li T, Li JQ, Wang FM, Wang QJ, Liu H, Zhu SN, Zhu YY (2007) Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures. Appl Phys Lett 90(25):251112

    Article  Google Scholar 

  37. Ohashi Y, Jan BR, Saito YK, Umakoshi T, Verma P (2018) Plasmonic transfer of near-field light from subwavelength objects through a gold-nanorod chain. Appl Phys Express 11(10):102001–102006

    Article  Google Scholar 

  38. Zhan GZ, Liang RS, Liang HT, Luo J, Zhao RT (2014) Asymmetric band-pass plasmonic nano-disk filter with mode inhibition and spectrally splitting capabilities. Opt Express 22(8):9912–9919

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Fund of Provincial Education Department of Hu Nan (grant no. 16C1375), the Hu Nan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture (grant no. 2018TP1041), and the Postgraduate Science Foundation Project of University of South China (grant no. 2018KYY004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qing Luo or Xinlin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Luo, XQ., Chen, Z. et al. Enhanced Optical Transmission Assisted Near-Infrared Plasmonic Optical Filter via Hybrid Subwavelength Structures. Plasmonics 14, 1649–1657 (2019). https://doi.org/10.1007/s11468-019-00963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00963-4

Keywords

Navigation