Skip to main content
Log in

Electronic Beam Switching of Circularly Polarized Plasma Magneto-Electric Dipole Array with Multiple Beams

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, different array arrangements based on magneto-electric (ME) dipole antenna with wideband circular polarization (CP) characteristics are designed and investigated. Planar, triangular prism, square prism, and hexagonal prism array arrangements are considered. Each prism face has a sub-array comprises 2 × 2 ME-dipole elements. Each sub-array has wide impedance matching of 73.7%, a maximum gain of 16.6 dBi, and CP bandwidth of 78.2%. It employs the plasma frequency of the ME-dipole antenna to control its radiation characteristics. Frequency-independent lumped element equivalent circuit is constructed for a single antenna element. It is used to represent the antenna input impedance at different plasma electron densities with fixed physical structure. The proposed equivalent circuit comprises a single series section used for matching enhancement with feeder circuit, and three parallel tuned circuits corresponding to the three resonance frequencies in the input impedance. The best values of the equivalent circuit elements are computed using the particle swarm optimization (PSO) technique. Different array arrangements, planar, triangular, square, and hexagonal prism are designed to create single or multiple beams in different directions. An electronic beam switching is achieved by tuning in the plasma inside the ME-dipole in the desired direction. The radiation characteristics are analyzed and investigated using the finite integration technique (FIT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen ZN, Liu D, Nakano H, Qing X, and Zwick T (2016) Handbook of antenna technologies, vol. 3, pp. 1969–2017, Springer Science Business Media

  2. Sabban A (2016) technologies and antennas in microwave frequencies. John Wiley & Sons, USA

    Book  Google Scholar 

  3. Qun WB (2016) Design of magneto-electric dipole antennas, Ph.D. thesis, Dept. of Elect. Eng. City, University of Hong Kong

  4. Feng B, Hong W, Li S, An W, Yin S (2013) A dual-wideband double-layer magneto electric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. Int J of Antennas and Propag Hindawi Publishing Corp 2013:1–9

    Article  Google Scholar 

  5. Zainud-Deen SH, Badaway MM, Malhat HA, Awadalla KH (2014) Circularly polarized plasma curl antenna for 2.45 GHz portable RFID reader. Plasmonics 9(5):1063–1069

    Article  CAS  Google Scholar 

  6. Gao SS, Luo Q, Zhu F (2014) Circularly polarized antennas. John Wiley & Sons, Ltd, UK

    Book  Google Scholar 

  7. Kishk AA (Sept. 2003) Performance of planar four-element array of single fed circularly polarized dielectric resonator antenna. Microwave and Opt Tech Lett 38(5):381–384

    Article  Google Scholar 

  8. Zainud-Deen SH, Malhat HA, and Awadalla KH (2011) “8x8 Near-field focused circularly polarized cylindrical DRA array for RFID applications,” Electrical and Electronic Eng J, pp. 5–11

  9. Li M, Luk K (2015) Wideband magneto electric dipole antennas with dual polarization and circular polarization. IEEE Antennas and Propag Magazine 57(1):110–119

    Article  Google Scholar 

  10. Liang W, Jiao Y, Li J, Ni T (2014) Circularly polarised magneto-electric dipole antenna. Electron Lett 50(14):976–978

    Article  Google Scholar 

  11. Cao J, Wang H, Mou S, Quan S, Ye Z (2017) W-band high-gain circularly polarized aperture-coupled magneto-electric dipole antenna array with gap waveguide feed network. IEEE Antennas and Wireless Propag Lett 16:2155–2158

    Article  Google Scholar 

  12. Mak KM, Luk KM (2009) A circularly polarized antenna with wide axial ratio beamwidth. IEEE Trans Antennas Propag 57(10):3309–3312

    Article  Google Scholar 

  13. Ta SX, Park I (2015) Crossed dipole loaded with magneto-electric dipole for wideband and wide-beam circularly polarized radiation. IEEE Antennas Wireless Propag Lett 14:358–361

    Article  Google Scholar 

  14. Kang K, Shi Y, Liang C (2017) A wideband circularly polarized magneto-electric dipole antenna. IEEE Antennas and Wireless Propag Lett 16:1647–1650

    Article  Google Scholar 

  15. Balanis CA, Ioannide PI (2007) Introduction to smart antennas. Morgan & Claypool Publishers series, USA

    Book  Google Scholar 

  16. Ge L, Luk KM (2016) Beamwidth reconfigurable magneto-electric dipole antenna based on tunable strip grating reflector. IEEE Access 4:7039–7045

    Article  Google Scholar 

  17. Wu F, Luk K (2017) A reconfigurable magneto-electric dipole antenna using bent cross-dipole feed for polarization diversity. IEEE Antennas and Wireless Propag Lett 16:412–415

    Article  Google Scholar 

  18. Chang C, Lee RH, Shih T (2010) Design of a beam switching/steering butler matrix for phased array system. IEEE Trans on Antennas and Propag 58(2):367–374

    Article  Google Scholar 

  19. Anderson T (2011) Plasma Antennas. Artech House, Norwood

    Google Scholar 

  20. Singh H, Jha RM (2015) Active radar cross section reduction: theory and applications, 1st edn. Cambridge University Press, UK

    Book  Google Scholar 

  21. Badawy MM, Malhat HA, Zainud-Deen SH, Awadalla KH (2015) A simple equivalent circuit model for plasma dipole antenna. IEEE Trans on Plasma Sci 43(12):4092–4098

    Article  Google Scholar 

  22. Malhat HA, Zainud-Deen SH, Badawy MM, Awadalla KH (2015) Dual-mode plasma reflectarray/ transmitarray antennas. IEEE Trans on Plasma Sci 43(9):3582–3589

    Article  CAS  Google Scholar 

  23. Hamid M, Hamid R (1997) Equivalent circuit of dipole antenna of arbitrary length. IEEE Trans on Antennas and Propag 45(11):1695–1696

    Article  Google Scholar 

  24. Bahl I (2013) Lumped elements for RF and microwave circuits. Artech house, INC., Norwood

    Google Scholar 

  25. Kim Y, Ling H (2006) Equivalent circuit modeling of broadband antennas using a rational function approximation. Microwave and Opt Tech Lett 48(5):950–953

    Article  Google Scholar 

  26. Zainud-Deen SH, El-Doda SI, Awadalla KH, Sharshar HA (2008) The relation between lumped-element circuit models for cylindrical dielectric resonator and antenna parameters using MBPE. Prog In Electromagn Res M PIER M 1:79–93

    Article  Google Scholar 

  27. Malhat HA, Zainud-Deen SH (2015) Equivalent circuit with frequency independent lumped elements for plasmonic graphene patch antenna using particle swarm optimization technique. Wireless Personal Comm 85(4):1851–1867

    Article  Google Scholar 

  28. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans on Antennas and Propag 52(2):397–407

    Article  Google Scholar 

  29. Tuovinen T, Berg M (2014) Impedance dependency on planar broadband dipole dimensions: an examination with antenna equivalent circuits. Prog In Electromagn Res 144:249–260

    Article  Google Scholar 

  30. Marklein R (2002) The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields. IEEE press, New York, pp 201–244

    Google Scholar 

  31. Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method electromagnetics: antennas, microwave circuits, and scattering applications, vol 6. John Wiley & Sons, USA

    Book  Google Scholar 

  32. Malhat HA, Zainud-Deen SH (2018) Reconfigurable plasma circularly polarized magneto-electric dipole antenna. National Radio Science Conference (NRSC), 2018 35th. IEEE, Egypt

    Book  Google Scholar 

  33. Meyyappan M, Govindan TR (1993) Radio frequency discharge modeling: moment equations approach. J Appl Phys 74(4):2250–2259

    Article  CAS  Google Scholar 

  34. Popov OA, Godyak VA (1985) Power dissipated in low-pressure radio-frequency discharge plasmas. J Appl Phys 57(1):53–58

    Article  CAS  Google Scholar 

  35. Van Roosmalen AJ, Vader PJQ (1990) A model for the power dissipation in RF plasmas. J Appl Phys 68(4):1497–1505

    Article  Google Scholar 

  36. Vendor D, Boswell RW (1990) Numerical modeling of low-pressure RF plasmas. IEEE Trans on Plasma Sci 18(4):725–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Malhat, H.A.EA. Electronic Beam Switching of Circularly Polarized Plasma Magneto-Electric Dipole Array with Multiple Beams. Plasmonics 14, 881–890 (2019). https://doi.org/10.1007/s11468-018-0870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0870-8

Keywords

Navigation