Skip to main content

Materials Effect in Sensing Performance Based on Surface Plasmon Resonance Using Photonic Crystal Fiber

Abstract

This article explores the effect of sensing performances with subject to change in different types of material and this study is carried out by the support of plasmon-coated photonic crystal fiber (PCF). Three different materials gold, niobium, and doping materials (niobium and Al2O3) have been used as sensing materials to find out the best performance of the raised structure. Each material deposited sequentially on the PCF surface and the structural characterization is analyzed by finite element method (FEM).The investigation shows that it can provide the enhanced wavelength sensitivity of 5000 nm/RIU, 8000 nm/RIU, and 10,000 nm/RIU; and amplitude sensitivity of 171 RIU−1, 188 RIU−1, and 249 RIU−1 for gold, niobium, and doping materials, respectively, at analytes 1.37 and 1.38. In both cases, doping materials show best outcome. Moreover, the proposed model is also investigated to detect the change of phase matching point with the variation of center air hole diameter. The obtained results ensure that it may be helpful for any chemical or biological analytes detection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lee B, Roh S, Park J (2009) Current status of micro-and nano-structured optical fiber sensors. Optical Fiber Technol 15(3):209–221. https://doi.org/10.1016/j.yofte.2009.02.006

    Article  CAS  Google Scholar 

  2. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539. https://doi.org/10.1007/s00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  3. Otupiri R, Akowuah E, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor. IEEE Photon J 6:1–11. https://doi.org/10.1109/JPHOT.2014.2335716

    Article  CAS  Google Scholar 

  4. Ortega-Mendoza JG, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morán P, Villegas-Hernández D, Chávez F (2014) Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors 14:18701–18710. https://doi.org/10.3390/s141018701

    Article  CAS  PubMed  Google Scholar 

  5. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48:1403–1410. https://doi.org/10.1109/JQE.2012.2213803

    Article  CAS  Google Scholar 

  6. Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan FM (2017) Photonic crystal fiber based plasmonic sensors. Sensors Actuators B: Chemical 1(243):311–325. https://doi.org/10.1016/j.snb.2016.11.113

    Article  CAS  Google Scholar 

  7. Maier SA (2006) Plasmonics: The promise of highly integrated optical devices. IEEE Journal of selected topics in Quantum Electronics 12(6):1671–1677. https://doi.org/10.1109/JSTQE.2006.884086

    Article  CAS  Google Scholar 

  8. Verma R, Srivastava SK, Gupta BD (2012) Surface-plasmon-resonance-based fiber-optic sensor for the detection of low-density lipoprotein. IEEE Sensors J 12(12):3460–3466. https://doi.org/10.1109/JSEN.2012.2210402

    Article  CAS  Google Scholar 

  9. Kelkar PV, Coppinger F, Bhushan AS, Jalali B (1999) Time-domain optical sensing. Electron Lett 16.35(19):1661–1662. https://doi.org/10.1049/el:19991116

    Article  Google Scholar 

  10. Azzam SI, Hameed MF, Shehata RE, Heikal AM, Obayya SS (2016) Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt Quant Electron 48(2):142. https://doi.org/10.1007/s1108

    Article  Google Scholar 

  11. Hasan MR, Akter S, Rahman MS, Ahmed K (2017) Design of a surface plasmon resonance refractive index sensor with high sensitivity. Opt Eng 56(8):087101. https://doi.org/10.1117/1.OE.56.8.087101

    Article  Google Scholar 

  12. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2018) Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sensors Journal 18(1):133–140. https://doi.org/10.1109/JSEN.2017.2769720

    Article  CAS  Google Scholar 

  13. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874–881. https://doi.org/10.1103/PhysRev.106.874

    Article  CAS  Google Scholar 

  14. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 1(4):299–304. https://doi.org/10.1016/0250-6874(83)85036-7

    Article  Google Scholar 

  15. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B: Chemical 12(3):213–220. https://doi.org/10.1016/0925-4005(93)80021-3

    Article  CAS  Google Scholar 

  16. Rifat AA, Mahdiraji GA, Shee YG, Shawon MJ, Adikan FM (2016) A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng 1(140):1–7. https://doi.org/10.1016/j.proeng.2015.08.1107

    Article  CAS  Google Scholar 

  17. Qin W, Li S, Yao Y, Xin X, Xue J (2014) Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Optics Lasers Eng 1(58):1–8. https://doi.org/10.1016/j.optlaseng.2014.01.003

    Article  Google Scholar 

  18. Hasan MR, Akter S, Ahmed K, Abbott D (2018) Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber. IEEE Photonics Technol Lett 30(4):315–318. https://doi.org/10.1109/LPT.2017.2786475

    Article  CAS  Google Scholar 

  19. Hasan MR, Hasan MI, Anower MS (2015) Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S+ C+ L+ U wavelength bands. Appl Optics 54(32):9456–9461. https://doi.org/10.1364/AO.54.009456

    Article  Google Scholar 

  20. Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416. https://doi.org/10.1103/PhysRevB.71.085416

    Article  CAS  Google Scholar 

  21. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sensing Bio-sensing Res 1(18):7–12. https://doi.org/10.1016/j.sbsr.2018.02.003

    Article  Google Scholar 

  22. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon Technol Lett 26(11):1092–1095. https://doi.org/10.1109/LPT.2014.2315233

    Article  CAS  Google Scholar 

  23. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7(8):1118–1129. https://doi.org/10.1109/JSEN.2007.897946

    Article  Google Scholar 

  24. Aoni RA, Ahmed R, Alam MM, Razzak SA (2013) Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int J Sci Eng Res 4:1–4

    Google Scholar 

  25. Lu Y, Hao CJ, Wu BQ, Musideke M, Duan LC, Wen WQ, Yao JQ (2013) Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers. Sensors 13(1):956–965. https://doi.org/10.3390/s130100956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to those who participated in this research work. There is no financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalek, M.A., Chakma, S., Ahmed, K. et al. Materials Effect in Sensing Performance Based on Surface Plasmon Resonance Using Photonic Crystal Fiber. Plasmonics 14, 861–867 (2019). https://doi.org/10.1007/s11468-018-0867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0867-3

Keywords

  • Materials
  • Finite element method
  • Plasmon resonance
  • Photonic crystal fiber