Design and Optimization of Open-cladded Plasmonic Waveguides for CMOS Integration on Si3N4 Platform

Abstract

Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. 3.

    Delacour C, Blaize S, Grosse P, Fedeli JM, Bruyant A, Salas-Montiel R, Lerondel G, Chelnokov A (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal−oxide−silicon nanophotonics. Nano Lett 10(8):2922–2926

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Li Q, Qiu M (2010) Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. Opt Express 18(15):15531–15543

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Melikyan A, Kohl M, Sommer M, Koos C, Freude W, Leuthold J (2014) Photonic-to-plasmonic mode converter. Opt Lett 39(12):3488–3491

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Zhu S, Liow T, Lo G, Kwong D Fully (2011) CMOS compatible subwavelength plasmonic slot waveguides for Si electronic-photonic integrated circuits. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. OThV5

  7. 7.

    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Thourhout DV, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nat Photonics 8:229–233

    Article  CAS  Google Scholar 

  8. 8.

    Chen CT, Xu X, Hosseini A, Pan Z, Chen RT (2015) High efficiency silicon strip waveguide to plasmonic slot waveguide mode converter. Proc SPIE 9368:936809

    Article  Google Scholar 

  9. 9.

    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Leuthold J (2015) All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9:525–528

    Article  CAS  Google Scholar 

  10. 10.

    Sun X, Dai D, Thylén L, Wosinski L (2015) High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt Express 23(20):25688–25699

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Nielsen MP, Lafone L, Rakovich A, Sidiropoulos T, Rahmani M, Maier SA, Oulton RF (2016) Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett 16(2):1410–1414

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Briggs RM, Grandidier J, Burgos SP, Feigenbaum E, Atwater HA (2010) Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett 10(120):4851–4857

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Papaioannou S, Vyrsokinos K, Tsilipakos O, Pitilakis A, Hassan K, Weeber J-C, Markey L, Dereux A, Bozhevolnyi SI, Miliou A, Kriezis E, Pleros N (2011) A 320 Gb/s-throughput capable 2x2 silicon-plasmonic router architecture for optical interconnects. J Lightwave Technol 29(21):3185–3195

    Article  Google Scholar 

  14. 14.

    Tsilipakos O, Pitilakis A, Yioultsis TV, Papaioannou S, Vyrsokinos K, Kalavrouziotis D, Giannoulis G, Apostolopoulos D, Avramopoulos H, Tekin T, Baus M, Karl M, Hassan K, Weeber J-C, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Pleros N, Kriezis EE (2012) Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration. IEEE J Quantum Electron 48:678–687

    Article  CAS  Google Scholar 

  15. 15.

    Papaioannou S, Kalavrouziotis D, Vyrsokinos K, Weeber J-C, Hassan K, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Baus M, Tekin T, Apostolopoulos D, Avramopoulos H, Pleros N (2012) Active plasmonics in WDM traffic switching applications. Sci Rep 2:65

    Article  CAS  Google Scholar 

  16. 16.

    Dabos G, Ketzaki D, Manolis A, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Tsiokos D, Pleros N (2018) Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics. IEEE Photonics J 10(1):1–8

    Article  Google Scholar 

  17. 17.

    Dabos G, Manolis A, Papaioannou S, Tsiokos D, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Pleros N (2018) CMOS plasmonics in WDM data transmission: 200 Gb/s (8 x 25Gb/s) transmission over aluminum plasmonic waveguides. Opt Express 26(10):12469–12478

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Wan R, Liu F, Tang X, Huang Y, Peng J (2009) Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode. Appl Phys Lett 94(14):141104

    Article  CAS  Google Scholar 

  19. 19.

    Liu F, Wan R, Li Y, Huang Y, Miura Y, Ohnishi D, Peng J (2009) Extremely high efficient coupling between long range surface plasmon polariton and dielectric waveguide mode. Appl Phys Lett 95(9):091104

    Article  CAS  Google Scholar 

  20. 20.

    Fan B, Liu F, Li Y, Huang Y, Miura Y, Ohnishi D (2012) Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Appl Phys Lett 100(11):111108

    Article  CAS  Google Scholar 

  21. 21.

    Zhu S, Lo G, Kwong D (2013) Silicon nitride based plasmonic components for CMOS back-end-of-line integration. Opt Express 21(20):23376–23390

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Dabos G, Ketzaki D, Manolis A, Chatzianagnostou E, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Tsiokos D, Pleros N (2018) Water cladded plasmonic slot waveguide vertically coupled with Si3N4 photonics. IEEE Photonics J 10(3):1–8

    Article  Google Scholar 

  23. 23.

    Maksymov IS, Kivshar YS (2013) Broadband light coupling to dielectric slot waveguides with tapered plasmonic nanoantennas. Opt Lett 38(22):4853–4856

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Baets R, Subramanian AZ, Clemmen S, Kuyken B, Bienstman P, Thomas NL, Roelkens G, Thourhout DV, Helin P, Severi S (2016) Silicon photonics: silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference:Th3J1

  25. 25.

    Rahim A, Ryckeboer E, Subramanian AZ, Clemmen S, Kuyken B, Dhakal A, Raza A, Hermans A, Muneeb M, Dhoore S, Li Y, Dave U, Bienstman P, Thomas NL, Roelkens G, Thourhout DV, Helin P, Severi S, Rottenberg X, Baets R (2017) Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J Lightwave Technol 35(4):639–649

    Article  CAS  Google Scholar 

  26. 26.

    Sacher W, Huang Y, Lo G-Q, Poon J (2015) Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J Lightwave Technol 33(4):901–910

    Article  CAS  Google Scholar 

  27. 27.

    Zektzer R, Desiatov B, Mazurski N, Bozhevolnyi SI, Levy U (2014) Experimental demonstration of CMOS- compatible long-range dielectric loaded surface plasmon waveguides (LR-DLSPPWs). Opt Express 22(18):22009–22017

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Kravets VG, Jalil R, Kim Y-J, Ansell D, Aznakayeva D, Thackray B, Britnell L, Belle B, Withers F, Radko I, Han Z, Bozhevolnyi S, Novoselov K, Geim A, Grigorenko A (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Fedyanin DY, Yakubovsky DI, Kirtaev RV, Volkov VS (2016) Ultralow-loss CMOS copper plasmonic waveguides. Nano Lett 16:362–366

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Lotan O, Smith C, Bar-David J, Mortensen NA, Kristensen A, Levy U (2016) Propagation of channel plasmons at the visible regime in aluminum v-groove waveguides. ACS Photonics 3:2150–2157

    Article  CAS  Google Scholar 

  31. 31.

    Weeber J-C, Arocas J, Heintz O, Markey L, Viarbitskaya S, Colas-Des-Francs G, Hammani K, Dereux A, Hoessbacher C, Koch U, Leuthold J, Rohracher K, Giesecke A-L, Porschatis C, Wahlbrink T, Chmielak B, Pleros N, Tsiokos D (2017) Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths. Opt Express 25(1):394–408

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417

    Article  CAS  Google Scholar 

  33. 33.

    Luke K, Okawachi Y, Lamont MRE, Gaeta AL, Lipson M (2015) Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt Lett 40(21):4823–4826

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Palik ED (1998) Handbook of optical constants of solids I-III. Academic Press, Orlando

    Google Scholar 

  35. 35.

    Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/mode/

  36. 36.

    Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/

  37. 37.

    Yariv A (1973) Coupled-mode theory for guided-wave optics. IEEE J Quantum Electron 9:919–933

    Article  CAS  Google Scholar 

  38. 38.

    Huang WP (1994) Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 11:963–983

    Article  Google Scholar 

  39. 39.

    Agrawal GP (2007) Nonlinear Fiber optics. Academic Press

Download references

Acknowledgments

This work is supported by the European H2020-EU.2.1.1 project PlasmoFab (Contract No. 688166).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Chatzianagnostou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatzianagnostou, E., Ketzaki, D., Dabos, G. et al. Design and Optimization of Open-cladded Plasmonic Waveguides for CMOS Integration on Si3N4 Platform. Plasmonics 14, 823–838 (2019). https://doi.org/10.1007/s11468-018-0863-7

Download citation

Keywords

  • CMOS metals
  • Photonic integrated circuits
  • Plasmonics
  • Silicon nitride
  • Surface waves