Skip to main content

Advertisement

Log in

Metamaterial-Based Energy Harvesting for Detectivity Enhanced Infrared Detectors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose new detectivity enhanced infrared detectors in which metamaterial cells are used to harvest the IR energy. Analytical models are developed and numerically verified to predict the behavior of the proposed detectors. Detectivity improvement factor (DIF) is defined to compare the performance of the proposed detectors with traditional ones. Numerical results show that the proposed detectors can provide a DIF value as high as 60. A comprehensive parametric study is performed to investigate how different physical and electrical parameters affect the performance of the proposed detectors. In this study, the effects of the shape of the resonators, their dimensions, and the metal from which they are made, on the performance of the proposed detectors, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.

Similar content being viewed by others

References

  1. Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag 51:1516–1529

    Article  Google Scholar 

  2. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations. John Wiley & Sons

  3. Smith DR, Schultz S, Markoš P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  CAS  Google Scholar 

  4. Yousefi L, Boybay S, Ramahi OM (2011) Characterization of metamaterials using a strip line fixture. IEEE Trans Antennas Propag 59:1245–1253

    Article  Google Scholar 

  5. Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraon A (2016) Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev 10:1002–1008

    Article  CAS  Google Scholar 

  6. Attia H, Yousefi L, Ramahi OM (2011) High gain patch antennas loaded with high characteristic impedance superstrates. IEEE Antennas Wirel. Propag Lett 10:858–861

    Google Scholar 

  7. Edwards B, Alu A, Silveirinha M, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901–153904

    Article  CAS  PubMed  Google Scholar 

  8. Haji-Ahmadi M-J, Nayyeri V, Soleimani M, Ramahi OM (2017) Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction. Sci Rep 7:11437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoaei M, Moravvej-Farshi M, Yousefi L (2015) All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions. J Opt Soc Am B 32:2358–2365

    Article  CAS  Google Scholar 

  10. Shoaei M, Moravvej-Farshi M, Yousefi L (2015) Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch. Appl Opt 54:1206–1211

    Article  CAS  PubMed  Google Scholar 

  11. Hawkes AM, Katko AR, Cummer SA (2013) A microwave metamaterial with integrated power harvesting functionality. Appl Phys Lett 103:163901

    Article  CAS  Google Scholar 

  12. Alshareef MR, Ramahi OM (2014) Electrically small particles combining even-and odd-mode currents for microwave energy harvesting. Appl Phys Lett 104:253906

    Article  CAS  Google Scholar 

  13. Ramahi OM, Almoneef TS, Alshareef M, Boybay MS (2012) Metamaterial particles for electromagnetic energy harvesting. Appl Phys Lett 101:173903

    Article  CAS  Google Scholar 

  14. Almoneef T, Ramahi OM (2015) Split-ring resonator arrays for electromagnetic energy harvesting. Prog Electromagn Res 62:167–180

    Article  Google Scholar 

  15. Alshareef MR, Ramahi OM (2013) Electrically small resonators for energy harvesting in the infrared regime. J Appl Phys 114:223101

    Article  CAS  Google Scholar 

  16. Bründermann E, Hübers HW, Kimmit MF (2012) Terahertz Techniques. Springer

  17. Huang Y, Tien EK, Gao S, Kalyoncu SK, Song Q, Qian F, Adas E, Yildirim D, Boyraz O (2008) Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides. Appl Phys Lett 99:181122

    Article  CAS  Google Scholar 

  18. Sarabandi K, Choi S (2013) Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics. J Appl Phys 114:214303

    Article  CAS  Google Scholar 

  19. Choi S (2014) Efficient Antennas for Terahertz and Optical Frequencies PhD Thesis University of Michigan

  20. Podor B, Horvath ZJ, Rakovics V (2009) Electrical and optical properties of InGaAsSb/GaSb 32nd Int. Spring Seminar on Electronic Technology, p 1–4

  21. Delgado V, Sydoruk O, Tatartschuk E, Marqués R, Freire MJ, Jelinek L (2009) Analytical circuit model for split ring resonators in the far infrared and optical frequency range. Metamaterials 3:57–62

    Article  CAS  Google Scholar 

  22. Mohamadi T, Yousefi L (2016) Detectivity enhanced IR detectors using metamaterials Fourth Int Conference on Millimeter-Wave and Terahertz Technologies, p 48–51

  23. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. 22:1099–119

  24. Guo H, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, Giessen H (2008) Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt Express 16:7756–7766

    Article  PubMed  Google Scholar 

  25. Constantine AB (1982) Antenna theory: analysis and design. John Wiley & Sons

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, T., Yousefi, L. Metamaterial-Based Energy Harvesting for Detectivity Enhanced Infrared Detectors. Plasmonics 14, 815–822 (2019). https://doi.org/10.1007/s11468-018-0862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0862-8

Keywords

Navigation