pp 1–8 | Cite as

Development of Metal-Enhanced Fluorescence-Based Aptasensor for Thrombin Detection Using Silver Dendritic Nanostructures

  • Arezoo Lotfi
  • Maryam NikkhahEmail author
  • Ahmad Moshaii


Metal-enhanced fluorescence (MEF) phenomenon has shown a promising potential in the field of fluorescence-based biological sensing. In this study, we optimized the electroless metal deposition method to fabricate silver dendritic nanostructures as effective MEF active substrates. Then, an aptasensor was developed for thrombin detection using the established surfaces. For this purpose, thiolated 29-mer thrombin-binding aptamers (TBA29 (12T) SH) as capturing aptamer were immobilized on the surface of silver dendritic nanostructures, then thrombin was sandwiched between the capturing aptamer and Cy5-labeled 15-mer thrombin aptamer (TBA15-Cy5). Quantitative analysis was performed through fluorescence signal measurement. The established aptasensor presented satisfactory sensitivity and selectivity and exhibited a limit of detection (LOD) as low as 32 pM. This aptasensor was also able to detect thrombin in the human serum at picomolar levels. Furthermore, the ease and relatively low-cost of fabrication of this platform introduce it as a tool with great potential for the clinical diagnosis of diseases and also for improving sensitivity of a variety of technologies which exploit fluorescent dyes for analyte detection, at ultra-trace levels, in complex matrices.


Silver dendritic nanostructure Metal-enhanced fluorescence (MEF) Thrombin Aptamer 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The experimental protocol was approved by the research ethics committee of Tarbiat Modares University. The participant provided written informed consent.


  1. 1.
    Hall EAH (1991) Biosensors. Prentice-Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Lakowicz JR, Koen PA, Szmacinski H, Gryczynski I, Kuśba J (1994) Emerging biomedical and advanced applications of time-resolved fluorescence spectroscopy. J Fluoresc 4:117–136CrossRefPubMedGoogle Scholar
  3. 3.
    Huang D, Niu C, Ruan M, Wang X, Zeng G, Deng C (2013) Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. Environ Sci Technol 47:4392–4398CrossRefPubMedGoogle Scholar
  4. 4.
    Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131:15352–15357CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nishi K, Isobe S-I, Zhu Y, Kiyama R (2015) Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors 15:25831–25867CrossRefPubMedGoogle Scholar
  6. 6.
    Tagit O, Hildebrandt N (2016) Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sens 2:31–45CrossRefPubMedGoogle Scholar
  7. 7.
    Chakraborty C, Hsu C-H, Wen Z-H, Lin C-S (2009) Recent advances of fluorescent technologies for drug discovery and development. Curr Pharm Des 15:3552–3570CrossRefPubMedGoogle Scholar
  8. 8.
    Goldys EM (2009) Fluorescence applications in biotechnology and life sciences. Wiley, HobokenGoogle Scholar
  9. 9.
    Lin F, Pei D, He W, Huang Z, Huang Y, Guo X (2012) Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots. J Mater Chem 22:11801–11807CrossRefGoogle Scholar
  10. 10.
    Tansakul C, Lilie E, Walter ED, Rivera F III, Wolcott A, Zhang JZ, Millhauser GL, Braslau R (2010) Distance-dependent fluorescence quenching and binding of CdSe quantum dots by functionalized nitroxide radicals. J Phys Chem C Nanomater Interfaces 114:7793–7805CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang W, Ding F, Li W-D, Wang Y, Hu J, Chou SY (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23:225301CrossRefPubMedGoogle Scholar
  12. 12.
    Freeman LM, Li S, Dayani Y, Choi HS, Malmstadt N, Armani AM (2011) Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators. Appl Phys Lett 98:143703CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yan D, Qin S, Chen L, Lu J, Ma J, Wei M, Evans DG, Duan X (2010) Thin film of sulfonated zinc phthalocyanine/layered double hydroxide for achieving multiple quantum well structure and polarized luminescence. Chem Commun 46:8654–8656CrossRefGoogle Scholar
  14. 14.
    Mathias PC, Wu H-Y, Cunningham BT (2009) Employing two distinct photonic crystal resonances to improve fluorescence enhancement. Appl Phys Lett 95:21111CrossRefPubMedGoogle Scholar
  15. 15.
    Ganesh N, Zhang W, Mathias PC, Chow E, Soares JANT, Malyarchuk V, Smith AD, Cunningham BT (2007) Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol 2:515–520CrossRefPubMedGoogle Scholar
  16. 16.
    Abdulhalim I, Karabchevsky A, Patzig C, Rauschenbach B, Fuhrmann B, Eltzov E, Marks R, Xu J, Zhang F, Lakhtakia A (2009) Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl Phys Lett 94:63106CrossRefGoogle Scholar
  17. 17.
    Liu Y-J, Chu HY, Zhao Y-P (2010) Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations. J Phys Chem C 114:8176–8183CrossRefGoogle Scholar
  18. 18.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002CrossRefPubMedGoogle Scholar
  19. 19.
    Campion A, Gallo AR, Harris CB, Robota HJ, Whitmore PM (1980) Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances. Chem Phys Lett 73:447–450CrossRefGoogle Scholar
  20. 20.
    Ranjan Gartia M, Eichorst JP, Clegg RM, Logan Liu G (2012) Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl Phys Lett 101:23118CrossRefGoogle Scholar
  21. 21.
    Atherton SJ, Harriman A (1993) Photochemistry of intercalated methylene blue: photoinduced hydrogen atom abstraction from guanine and adenine. J Am Chem Soc 115(5):1816–1822CrossRefGoogle Scholar
  22. 22.
    Gérardy JM, Ausloos M (1982) Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres. Phys Rev B 25:4204CrossRefGoogle Scholar
  23. 23.
    Johansson P, Xu H, Käll M (2005) Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B 72:35427CrossRefGoogle Scholar
  24. 24.
    Le Ru EC, Etchegoin PG (2006) Rigorous justification of the| E| 4 enhancement factor in surface enhanced Raman spectroscopy. Chem Phys Lett 423:63–66CrossRefGoogle Scholar
  25. 25.
    Le Ru EC, Etchegoin PG (2005) Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) in the context of modified spontaneous emission. arXiv:physics/0509154 [https://www.physics.chem-ph]
  26. 26.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Single-molecule studies on fluorescently labeled silver particles: effects of particle size. J Phys Chem C Nanomater Interfaces 112:18CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–129CrossRefGoogle Scholar
  28. 28.
    Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2004) Roughened silver electrodes for use in metal-enhanced fluorescence. Spectrochim Acta A Mol Biomol Spectrosc 60:1977–1983CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lang XY, Guan PF, Zhang L, Fujita T, Chen MW (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96:73701CrossRefGoogle Scholar
  30. 30.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chumanov G, Sokolov K, Gregory BW, Cotton TM (1995) Colloidal metal-films as a substrate for surface-enhanced spectroscopy. J Phys Chem 99:9466–9471CrossRefGoogle Scholar
  33. 33.
    Ju J, Byeon E, Han Y, Kim S (2013) Fabrication of a substrate for Ag-nanorod metal-enhanced fluorescence using the oblique angle deposition process. Micro Nano Lett 8:370–373CrossRefGoogle Scholar
  34. 34.
    Hossain MK, Huang GG, Kaneko T, Ozaki Y (2009) Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure. Phys Chem Chem Phys 11:7484–7490CrossRefPubMedGoogle Scholar
  35. 35.
    Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128:4206–4207CrossRefPubMedGoogle Scholar
  36. 36.
    Chang Y-F, Yu J-S, Chang Y-T, Su LC, Wu CC, Chang YS, Lai CS, Chou C (2013) The utility of a high-throughput scanning biosensor in the detection of the pancreatic cancer marker ULBP2. Biosens Bioelectron 41:232–237CrossRefPubMedGoogle Scholar
  37. 37.
    Dragan AI, Albrecht MT, Pavlovic R, Keane-Myers AM, Geddes CD (2012) Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal Biochem 425:54–61CrossRefPubMedGoogle Scholar
  38. 38.
    Huang C-J, Dostalek J, Sessitsch A, Knoll W (2011) Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157: H7. Anal Chem 83:674–677CrossRefPubMedGoogle Scholar
  39. 39.
    Dong J, Zheng H (2013) Self-assembled synthesis of SEF-active silver dendrites by galvanic displacement on copper substrate. Appl Phys B Lasers Opt 111:523–526CrossRefGoogle Scholar
  40. 40.
    Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13:267–276CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fu L, Tamanna T, Hu W-J, Yu A (2014) Chemical preparation and applications of silver dendrites. Chem Pap 68:1283–1297CrossRefGoogle Scholar
  42. 42.
    Fei Chan Y, Xing Zhang C, Long Wu Z, Mei Zhao D, Wang W, Jun Xu H, Sun XM (2013) Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl Phys Lett 102:183118CrossRefGoogle Scholar
  43. 43.
    Fenton JW (1981) Thrombin specificity. Ann N Y Acad Sci 370:468–495CrossRefPubMedGoogle Scholar
  44. 44.
    Shuman MA (1986) Thrombin-cellular interactions. Ann N Y Acad Sci 485:228–239CrossRefPubMedGoogle Scholar
  45. 45.
    Becker RC, Spencer FA (1998) Thrombin: structure, biochemistry, measurement, and status in clinical medicine. J Thromb Thrombolysis 5:215–229CrossRefPubMedGoogle Scholar
  46. 46.
    Bichler J, Heit JA, Owen WG (1996) Detection of thrombin in human blood by ex-vivo hirudin. Thromb Res 84:289–294CrossRefPubMedGoogle Scholar
  47. 47.
    Shuman MA, Majerus PW (1976) The measurement of thrombin in clotting blood by radioimmunoassay. J Clin Invest 58:1249–1258CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Qiu T, Wu XL, Mei YF, Chu PK, Siu GG (2005) Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Appl Phys A Mater Sci Process 81:669–671CrossRefGoogle Scholar
  49. 49.
    Dong J, Zheng H et al (2012) Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Appl Phys Lett 100:51112CrossRefGoogle Scholar
  50. 50.
    Peng K, Yan Y, Gao S, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132CrossRefGoogle Scholar
  51. 51.
    Qiu T, Wu XL, Siu GG, Chu PK (2006) Intergrowth mechanism of silicon nanowires and silver dendrites. J Electron Mater 35:1879–1884CrossRefGoogle Scholar
  52. 52.
    Wang S, Xin H (2000) Fractal and dendritic growth of metallic Ag aggregated from different kinds of γ-irradiated solutions. J Phys Chem B 104:5681–5685CrossRefGoogle Scholar
  53. 53.
    He L, Lin M, Li H, Kim N (2010) Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J Raman Spectrosc 41:739–744Google Scholar
  54. 54.
    Aslan K, Zhang Y, Hibbs S, Baillie L, Previte MJR, Geddes CD (2007) Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in < 30 seconds. Analyst 132:1130–1138CrossRefPubMedGoogle Scholar
  55. 55.
    Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Little TA (2015) Method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm Int 28:48–51Google Scholar
  57. 57.
    Huang D-W, Niu C-G, Qin P-Z, Ruan M, Zeng GM (2010) Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection. Talanta 83:185–189CrossRefPubMedGoogle Scholar
  58. 58.
    Li H, Zhang Y, Luo Y, Sun X (2011) Nano-C60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568CrossRefPubMedGoogle Scholar
  59. 59.
    Meneghello A, Sosic A, Antognoli A, Cretaio E, Gatto B (2012) Development and optimization of a thrombin sandwich aptamer microarray. Microarrays 1:95–106CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li Y, Ling L (2015) Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182:1849–1854CrossRefGoogle Scholar
  61. 61.
    Wang Y, Bao L, Liu Z, Pang D-W (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83:8130–8137CrossRefPubMedGoogle Scholar
  62. 62.
    Lu C, Yang H, Zhu C et al (2009) A graphene platform for sensing biomolecules. Angew Chem 121:4879–4881CrossRefGoogle Scholar
  63. 63.
    Yu J, Yang L, Liang X, Dong T, Liu H (2015) Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin. Analyst 140:4114–4120CrossRefPubMedGoogle Scholar
  64. 64.
    Sui N, Wang L, Xie F, Liu F, Xiao H, Liu M, Yu WW (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183:1563–1570CrossRefGoogle Scholar
  65. 65.
    Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W, Tan W, Lan X (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:172–177CrossRefPubMedGoogle Scholar
  66. 66.
    Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci 90:3745–3749CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nanobiotechnology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Physics, Faculty of Basic SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations