Advertisement

Plasmonics

, Volume 14, Issue 2, pp 271–277 | Cite as

Structural Evolution Design and Optimization for the Metamaterials with Broadband Frequency-Independent Negative Permeability

  • Junxiang Xiang
  • Yongfei Yang
  • Zhou Zheng
  • Bin XiangEmail author
  • Xudong CuiEmail author
Article
  • 110 Downloads

Abstract

Broadband frequency-independent operations are strongly desired in metamaterial applications. In this work, we unveil the roles of each element acting in the metamaterial unit with a structural evolution design methodology. Starting with “split ring resonator” (SRR) prototype structures, we focus on the variations of elements on the magnetic response and successfully realize the structures of “clock-like” and “wire pairs” with double and broadband frequency-independent negative permeability (0.725 to 0.9 THz, μ = − 0.75). Our results suggested that multi-resonance modes induced by elements integration could extend working bands. By well parameters tuning, the phase mismatch during multi-modes interactions could be utilized to modify the working bands with frequency-independent features as well. Our investigations are beneficial to the design of functional negative permeability metamaterials with broadband operations.

Keywords

Metamaterials Broadband Permeability Structural evolution 

Notes

Acknowledgements

We thank Xiao Liu for the contribution to this work.

Funding Information

This study was supported by the joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics (NSAF) (U1630108). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

References

  1. 1.
    Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ϵ AND μ. Phys-Usp 10(4):509–514Google Scholar
  2. 2.
    Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356–3358CrossRefGoogle Scholar
  3. 3.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969CrossRefGoogle Scholar
  4. 4.
    Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1(4):224–227CrossRefGoogle Scholar
  5. 5.
    Pendry J, Holden A, Stewart W, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773–4776CrossRefGoogle Scholar
  6. 6.
    Pendry J, Holden A, Robbins D, Stewart W (1998) Low frequency plasmons in thin-wire structures. J Phys Condens Matter 10(22):4785–4809CrossRefGoogle Scholar
  7. 7.
    Pendry JB, Holden AJ, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE T Microw Theory 47(11):2075–2084CrossRefGoogle Scholar
  8. 8.
    Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187CrossRefGoogle Scholar
  9. 9.
    Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32(1):53–55CrossRefGoogle Scholar
  10. 10.
    Zhang S, Fan W, Malloy K, Brueck S, Panoiu N, Osgood R (2005) Near-infrared double negative metamaterials. Opt Express 13(13):4922–4930CrossRefGoogle Scholar
  11. 11.
    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C, Economou E (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75(23):235114CrossRefGoogle Scholar
  12. 12.
    Baena JD, Marques R, Medina F, Martel J (2004) Artificial magnetic metamaterial design by using spiral resonators. Phys Rev B 69(1):014402CrossRefGoogle Scholar
  13. 13.
    Liu N, Liu H, Zhu S, Giessen H (2009) Stereometamaterials. Nat Photonics 3(3):157–162CrossRefGoogle Scholar
  14. 14.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325(5947):1513–1515CrossRefGoogle Scholar
  15. 15.
    Gansel JK, Latzel M, Frölich A, Kaschke J, Thiel M, Wegener M (2012) Tapered gold-helix metamaterials as improved circular polarizers. Appl Phys Lett 100(10):101109CrossRefGoogle Scholar
  16. 16.
    Ou JY, Plum E, Zhang J, Zheludev NI (2013) An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 8(4):252–255CrossRefGoogle Scholar
  17. 17.
    Gil I, Martin F, Rottenberg X, De Raedt W (2007) Tunable stop-band filter at Q-band based on RF-MEMS metamaterials. Electron Lett 43(21):1153–1153CrossRefGoogle Scholar
  18. 18.
    Zhu W, Cai H, Mei T, Bourouina T, Tao J, Lo G, Kwong D, Liu A (2010) In A MEMS tunable metamaterial filter. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS) 196–199Google Scholar
  19. 19.
    Li LW, Li YN, Yeo TS, Mosig JR, Martin OJ (2010) A broadband and high-gain metamaterial microstrip antenna. Appl Phys Lett 96(16):164101CrossRefGoogle Scholar
  20. 20.
    Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96(10):107401CrossRefGoogle Scholar
  21. 21.
    Chen HT, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600CrossRefGoogle Scholar
  22. 22.
    Zhao Q, Kang L, Du B, Li B, Zhou J, Tang H, Liang X, Zhang B (2007) Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett 90(1):011112CrossRefGoogle Scholar
  23. 23.
    Shadrivov IV, Kozyrev AB, van der Weide DW, Kivshar YS (2008) Nonlinear magnetic metamaterials. Opt Express 16(25):20266–20271CrossRefGoogle Scholar
  24. 24.
    Zhang F, Zhao Q, Kang L, Gaillot DP, Zhao X, Zhou J, Lippens D (2008) Magnetic control of negative permeability metamaterials based on liquid crystals. Appl Phys Lett 92(19):193104CrossRefGoogle Scholar
  25. 25.
    Powell DA, Shadrivov IV, Kivshar YS (2009) Nonlinear electric metamaterials. Appl Phys Lett 95(8):084102CrossRefGoogle Scholar
  26. 26.
    Xiao S, Chettiar UK, Kildishev AV, Drachev V, Khoo I, Shalaev VM (2009) Tunable magnetic response of metamaterials. Appl Phys Lett 95(3):033115CrossRefGoogle Scholar
  27. 27.
    Manceau JM, Shen NH, Kafesaki M, Soukoulis C, Tzortzakis S (2010) Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl Phys Lett 96(2):021111CrossRefGoogle Scholar
  28. 28.
    Zhu WM, Liu AQ, Zhang XM, Tsai DP, Bourouina T, Teng JH, Zhang XH, Guo HC, Tanoto H, Mei T (2011) Switchable magnetic metamaterials using micromachining processes. Adv Mater 23(15):1792–1796CrossRefGoogle Scholar
  29. 29.
    Zhu W, Liu A, Bourouina T, Tsai D, Teng J, Zhang X, Lo G, Kwong D, Zheludev N (2012) Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat Commun 3:1274CrossRefGoogle Scholar
  30. 30.
    Lapine M, Shadrivov I, Kivshar Y (2012) Wide-band negative permeability of nonlinear metamaterials. Sci Rep 2:412CrossRefGoogle Scholar
  31. 31.
    Chen HT (2014) Semiconductor activated terahertz metamaterials. Front Optoelectron 8(1):27–43CrossRefGoogle Scholar
  32. 32.
    Valente J, Ou JY, Plum E, Youngs IJ, Zheludev NI (2015) Reconfiguring photonic metamaterials with currents and magnetic fields. Appl Phys Lett 106(11):111905CrossRefGoogle Scholar
  33. 33.
    Buchnev O, Podoliak N, Kaczmarek M, Zheludev NI, Fedotov VA (2015) Metamaterials: electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch (advanced optical materials 5/2015). Adv Opt Mater 3(5):595–595CrossRefGoogle Scholar
  34. 34.
    Wang Y, Wu Q, Wu YM, Zhang K, Li LW, Yin JH (2011) Broadband terahertz left-hand material with negative permeability for magnetic response. IEEE Trans Magn 47(10):2592–2595CrossRefGoogle Scholar
  35. 35.
    Tung NT, Tung BS, Janssens E, Lievens P, Lam VD (2014) Broadband negative permeability using hybridized metamaterials: characterization, multiple hybridization, and terahertz response. J Appl Phys 116(8):083104CrossRefGoogle Scholar
  36. 36.
    Trang PT, Nguyen BH, Tiep DH, Thuy LM, Lam VD, Tung NT (2016) Symmetry-breaking metamaterials enabling broadband negative permeability. J Electron Mater 45(5):2547–2552CrossRefGoogle Scholar
  37. 37.
    Hu CG, Liu LY, Chen XN, Luo XG (2008) Expanding the band of negative permeability of a composite structure with dual-band negative permeability. Opt Express 16(26):21544–21549CrossRefGoogle Scholar
  38. 38.
    Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617CrossRefGoogle Scholar
  39. 39.
    Smith D, Schultz S, Markoš P, Soukoulis C (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104CrossRefGoogle Scholar
  40. 40.
    Chen X, Grzegorczyk TM, Wu BI, Pacheco J Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70(1):016608CrossRefGoogle Scholar
  41. 41.
    Cai W, Shalaev VM (2009) Optical metamaterials: fundamentals and applications. Springer Science & Business Media.  https://doi.org/10.1007/978-1-4419-1151-3

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonic Technology Research and Development CenterQuanzhou Normal UniversityQuanzhouChina
  2. 2.Department of Materials Science & Engineering, CAS key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information & Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Sichuan New Materials Research Center, Institute of Chemical MaterialsCAEPChengduChina

Personalised recommendations