Skip to main content
Log in

Polarization-Insensitive Ultra-Narrow Plasmon-Induced Transparency and Short-range Surface Plasmon Polariton Bloch Wave in Ultra-thin Metallic Film Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate that polarization-insensitive ultra-narrow double plasmon-induced transparency (PIT) can be achieved in the thin-metal-film nanostructures. Ultra-narrow PIT resonance with a bandwidth of 2.5 nm at central wavelength of 768 nm was obtained (~ 1/307 of the peak wavelength). Multispectral PIT can be obtained, and its linewidth and the “on-off” state of the PIT peaks in the system can be adjusted by the metallic nanostructure thickness and particularly the waveguide layer thickness. The narrow transparency window is exhibited to be generated by the coupling and interference between a delocalized hybrid-waveguide photonics mode and the localized surface plasmon (LSP) mode. The angular-dependent dispersion of the system with double PITs is examined and investigated, where the high-order short-range surface plasmon polariton (SRSPP) Bloch waves excited for large incidence angles are indicated and revealed. The multispectral PITs with high quality in the large-area plasmonic system are promising for practical and compact nanophotonics applications such as optical buffers, ultra-sensitive sensor, plasmonic filters, and switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  2. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  CAS  PubMed  Google Scholar 

  3. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  4. Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104

    Article  CAS  Google Scholar 

  5. Zentgraf T, Zhang S, Oulton RF, Zhang X (2009) Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems. Phys Rev B 80:195415

    Article  CAS  Google Scholar 

  6. Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:6753

    Google Scholar 

  7. Zhang J, Bai WL, Cai LK, Xu Y, Song GF, Gan QQ (2011) Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems. Appl Phys Lett 99:181120

    Article  CAS  Google Scholar 

  8. Artar A, Yanik AA, Altug H (2011) Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689

    Article  CAS  PubMed  Google Scholar 

  9. Miyata M, Hirohata J, Nagasaki Y, Takahara J (2014) Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling. Opt Express 22:11399–11406

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37:5133–5135

    Article  PubMed  Google Scholar 

  11. Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85:053803

    Article  CAS  Google Scholar 

  12. Hokmabadi MP, Philip E, Rivera E, Kung P, Kim SM (2015) Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators. Sci Rep 5:15735

    Article  CAS  Google Scholar 

  13. Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C, Tian J (2012) Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett 101:143105

    Article  CAS  Google Scholar 

  14. Liu J, Xu B, Hu H, Zhang J, Wei X, Xu Y, Song G (2013) Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system. Opt Express 21:13386–13393

    Article  PubMed  Google Scholar 

  15. Lee S-G, Kim S-H, Kim K-J, Kee C-S (2017) Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures. Appl Phys Lett 110:111106

    Article  CAS  Google Scholar 

  16. Palik ED (1985) Handbook of optical constants of solids. Academic Press

  17. Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 1–7

  18. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  CAS  PubMed  Google Scholar 

  19. Peng B, Özdemir ŞK, Chen W, Nori F, Yang L (2014) What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 5:5082

    Article  CAS  PubMed  Google Scholar 

  20. Zhan SP, Li HJ, Cao GT, He ZH, Li BX, Xu H (2014) Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems. Plasmonics 9:1431–1437

    Article  CAS  Google Scholar 

  21. Linden S, Christ A, Kuhl J, Giessen H (2001) Selective suppression of extinction within the plasmon resonance of gold nanoparticles. Appl Phys B Lasers Opt 73:311–316

    Article  CAS  Google Scholar 

  22. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901

    Article  CAS  PubMed  Google Scholar 

  23. Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys Rev B 70:125113

    Article  CAS  Google Scholar 

  24. Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41(22):5333–5336

    Article  CAS  PubMed  Google Scholar 

  25. Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252

    Article  CAS  Google Scholar 

  26. Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74:155435

    Article  CAS  Google Scholar 

  27. Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101:087403

    Article  CAS  PubMed  Google Scholar 

  28. Braun J, Gompf B, Weiss T, Giessen H, Dressel M, Hübner U (2011) Optical transmission through subwavelength hole arrays in ultrathin metal films. Phys Rev B 84:155419

    Article  CAS  Google Scholar 

  29. Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103:203901

    Article  CAS  PubMed  Google Scholar 

  30. Gan QQ, Bai WL, Jiang SH, Gao YK, Li WD, Wu W, Bartoli FJ (2012) Short-range surface plasmon polaritons for extraordinary low transmission through ultra-thin metal films with nanopatterns. Plasmonics 7:47–52

    Article  CAS  Google Scholar 

  31. Huang C-p, Wang Q-j, Zhu Y-y (2007) Dual effect of surface plasmons in light transmission through perforated metal films. Phys Rev B 75:245421

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11704299) and by the 111 project (B17035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JT., Hu, HF. & Shao, XP. Polarization-Insensitive Ultra-Narrow Plasmon-Induced Transparency and Short-range Surface Plasmon Polariton Bloch Wave in Ultra-thin Metallic Film Nanostructures. Plasmonics 14, 139–146 (2019). https://doi.org/10.1007/s11468-018-0786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0786-3

Keywords

Navigation