Advertisement

Plasmonics

, Volume 14, Issue 1, pp 109–116 | Cite as

Plasmon Excitation in BC3 Nanostructures from First Principles

  • Jiuhuan Chen
  • Xin-Lu ChengEmail author
  • Hong Zhang
Article
  • 112 Downloads

Abstract

The plasmonic of BC3 nanostructure was investigated employing time-dependent density functional theory (TDDFT). What is striking is that BC3 nanostructure possesses preferable absorbance in the visible region. By changing the size of the nanostructure, the resonance peak position of the absorption spectrum can be effectively regulated. Moreover, when excitation direction along the armchair-edge direction, the absorption spectra are clearly stronger in the low-energy zone respect to the impulse excitation polarizes in the zigzag-edge direction. In addition, with the change of layer spacing and number of layers, the resonance frequency and resonance absorption peak intensity of plasmonic can be effectively controlled. The remarkable optical properties of BC3 nanostructure suggest potential application of the system in solar cells and photolysis water devices.

Keywords

BC3 nanostructures Plasmon Time-dependent density functional theory 

Notes

Funding Information

This study received financial support from the National Natural Science Foundation of China (NSFC. Grant Nos.11474207 and 11774248).

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Willets KA, Van Duyne RP (2007) Localized surface Plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  3. 3.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  4. 4.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  5. 5.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  6. 6.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15CrossRefGoogle Scholar
  7. 7.
    Kambhampati DK, Knoll W (1999) Surface-plasmon optical techniques. Curr Opin Colloid Interface Sci 4:273–280CrossRefGoogle Scholar
  8. 8.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  9. 9.
    Berini P, De Leon I (2011) Surface plasmon–polariton amplifiers and lasers. Nat Photonics 6:16CrossRefGoogle Scholar
  10. 10.
    Sahu PP (2016) Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. J Lightwave Technol 34:1300–1305CrossRefGoogle Scholar
  11. 11.
    Gogoi N, Sahu PP (2015) All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54:1051–1057CrossRefGoogle Scholar
  12. 12.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRefGoogle Scholar
  13. 13.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291CrossRefGoogle Scholar
  14. 14.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  15. 15.
    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907CrossRefGoogle Scholar
  16. 16.
    Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270CrossRefGoogle Scholar
  17. 17.
    Ohno Y, Maehashi K, Matsumoto K (2010) Chemical and biological sensing applications based on graphene field-effect transistors. Biosens Bioelectron 26:1727–1730CrossRefGoogle Scholar
  18. 18.
    Chen F, Xia J, Ferry DK, Tao N (2009) Dielectric screening enhanced performance in graphene FET. Nano Lett 9:2571–2574CrossRefGoogle Scholar
  19. 19.
    Muhyiddeen Yahya M, Maturi R, Lin X, Li RJ, Wang HP, Li EP, Zhang BL, Chen HS (2018) Confined transverse electric phonon polaritons in hexagonal boron nitrides. 2D Materials 5:015018Google Scholar
  20. 20.
    Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu SE, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10:682–686CrossRefGoogle Scholar
  21. 21.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2014) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat Mater 14:421CrossRefGoogle Scholar
  22. 22.
    Shu XQ, Zhang H, Xl C, Miyamoto Y (2016) Tunable plasmons in few-layer nitrogen-doped graphene nanostructures: a time-dependent density functional theory study. Phys Rev B 93:195424CrossRefGoogle Scholar
  23. 23.
    Despoja V, Novko D, Dekanic K, Sunjic M, Marusic L (2013) Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys Rev B 87:075447CrossRefGoogle Scholar
  24. 24.
    Stauber T, Gomez-Santos G (2012) Plasmons and near-field amplification in double-layer graphene. Phys Rev B 85:075410CrossRefGoogle Scholar
  25. 25.
    Yin HF, Zhang H (2012) Plasmons in graphene nanostructures. J Appl Phys 111:103502CrossRefGoogle Scholar
  26. 26.
    Li MU, Zheng HS, Gangopadhyay S, Chen B, Bok S, Gangopadhyay K, Mathai J (2016) Surface-plasmon-enhanced Raman and photoluminescence of few-layers and bulk MoS2 on silver grating. Conference on Lasers and Electro-Optics JW2A: 111Google Scholar
  27. 27.
    Kim G, Kim M, Hyun C, Hong S, Ma KY, Shin HS, Lim H (2016) Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy. ACS Nano 10:11156–11162CrossRefGoogle Scholar
  28. 28.
    Lin JH, Zhang H, Cheng XL (2015) First-principle study on the optical response of phosphorene. Front Phys 10:1–9CrossRefGoogle Scholar
  29. 29.
    Tanaka H, Kawamata Y, Simizu H, Fujita T, Yanagisawa H, Otani S, Oshima C (2005) Novel macroscopic BC3 honeycomb sheet. Solid State Commun 136:22–25CrossRefGoogle Scholar
  30. 30.
    Miyamoto Y, Rubio A, Louie SG, Cohen ML (1994) Electronic properties of tubule forms of hexagonal BC3. Phys Rev B 50:18360–18366CrossRefGoogle Scholar
  31. 31.
    Liu SY, Liu S, Li DJ, Dang H, Liu Y, Xue S, Xue W, Wang S (2013) Bonding, stability, and electronic properties of the BC3 honeycomb monolayer structure on NbB2(0001). Phys Rev B 88:115434CrossRefGoogle Scholar
  32. 32.
    Ding Y, Wang Y, Ni J (2010) Structural, electronic, and magnetic properties of defects in the BC3 sheet from first principles. J Phys Chem C 114:12416–12421CrossRefGoogle Scholar
  33. 33.
    Manju MS, Harikrishnan G, Ajith KM, Valsakumar MC (2016) Effect of pressure on the band structure of BC3. AIP Conference Proceedings 1731:090015CrossRefGoogle Scholar
  34. 34.
    Lin X, Ni J (2012) Electronic and magnetic properties of substitutionally Fe-, Co-, and Ni-doped BC3 honeycomb structure. J Appl Phys 111:034309CrossRefGoogle Scholar
  35. 35.
    Behzad S (2017) Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain. Surf Sci 665:37–42CrossRefGoogle Scholar
  36. 36.
    Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi B 243:2465–2488CrossRefGoogle Scholar
  37. 37.
    Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron–ion dynamics☆☆E-mail: octopus@tddft.org. Comput Phys Commun 151:60–78CrossRefGoogle Scholar
  38. 38.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  39. 39.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  40. 40.
    Yabana K, Bertsch GF (1996) Time-dependent local-density approximation in real time. Phys Rev B 54:4484–4487CrossRefGoogle Scholar
  41. 41.
    Ye M, Winslow D, Zhang D, Pandey R, Yap Y (2015) Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics 2:288–307CrossRefGoogle Scholar
  42. 42.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  43. 43.
    Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett 12:1648–1654CrossRefGoogle Scholar
  44. 44.
    Pei FY, Liu YL, Xu SG, Lu J, Wang CX, Cao SK (2013) Nanocomposite of graphene oxide with nitrogendoped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int J Hydrog Energy 38:2670–2677CrossRefGoogle Scholar
  45. 45.
    Yang L, Li XY, Zhang GZ, Cui P, Wang XJ, Jiang X, Zhao J, Luo Y, Jiang J (2017) Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat Commun 8:16049CrossRefGoogle Scholar
  46. 46.
    Li XX, Wang LJ, Li CF, Chen BK, Zhao Q, Zhang GQ (2016) Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles. J Power Sources 308:65–74CrossRefGoogle Scholar
  47. 47.
    Li XX, Jia CC, Ma BJ, Wang W, Zhang GQ, Guo XF (2015) Substrate-induced interfacial plasmonics for photovoltaic conversion. Sci Rep 5:14497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Physical Science and TechnologySichuan UniversityChengduChina
  3. 3.Key Laboratory of High Energy Density Physics and Technology of Ministry of EducationSichuan UniversityChengduChina

Personalised recommendations