Advertisement

Plasmonics

pp 1–11 | Cite as

Photocatalytic Properties under Sunlight of Heterostructures AgCl/CuO Obtained by Sonochemical Method

  • N. F. Andrade Neto
  • E. Longo
  • K. N. Matsui
  • C. A. Paskocimas
  • M. R. D. Bomio
  • F. V. Motta
Article
  • 74 Downloads

Abstract

AgCl/CuO heterostructures were synthesized via a sonochemical method. AgCl/CuO molar compositions of 1:1 and 2:1 were prepared, respectively. Such compositions were prepared using three distinct routes. The particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM-FEG) and UV-Vis spectroscopy (UV-Vis). In order to analyze the applicability of the heterostructure, photocatalytic tests were performed under sunlight and UV-Vis radiation for the degradation of the methylene blue dye. The results of the X-ray diffraction confirmed the formation of the AgCl/CuO heterostructure in all samples, with no evidence of doping or formation of deleterious phases. SEM images indicate a cubic-like morphology for the AgCl particles, forming Ag0 on its surface, the CuO particles have a leaf appearance. The results of the photocatalytic activity indicate that the increase of the AgCl molar ratio from 1:1 to 2:1 accelerates the degradation of methylene blue for both the radiations and shows that sunlight decreases by at least 55% for the degradation of the methylene blue, depending on the composition, to the heterostructure.

Keywords

Photocatalysis Sunlight Heterostructure AgCl/CuO Sonochemical 

Notes

Acknowledgements

The authors thank the financial support of the Brazilian research financing institutions: CAPES, CNPq No. 402127/2013-7, and FAPESP 2013/07296-2.

References

  1. 1.
    Ananth A, Dharaneedharan S, Heo MS, Mok YS (2015) Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J 262:179–188CrossRefGoogle Scholar
  2. 2.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284CrossRefGoogle Scholar
  3. 3.
    Reitz JB, Solomon EI (1998) Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc 120:11467–11478CrossRefGoogle Scholar
  4. 4.
    Ramı́rez-Ortiz J, Ogura T, Medina-Valtierra J, Acosta-Ortiz SaE, Bosch P, Antonio de los Reyes J, Lara VH (2001) A catalytic application of Cu2O and CuO films deposited over fiberglass. Appl Surf Sci 174:177–184CrossRefGoogle Scholar
  5. 5.
    Sun J-H, Dong S-Y, Wang Y-K, Sun S-P (2009) Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J Hazard Mater 172:1520–1526CrossRefGoogle Scholar
  6. 6.
    Yola ML, Eren T, Atar N, Wang S (2014) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340CrossRefGoogle Scholar
  7. 7.
    Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Sheibani S (2017) Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb2+ from biological samples prior to determination by ICP MS. Mater Sci Eng C Mater Biol Appl 77:459–469CrossRefGoogle Scholar
  8. 8.
    Atar N, Eren T, Yola ML, Gerengi H, Wang S (2015) Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics 21:3185–3192CrossRefGoogle Scholar
  9. 9.
    Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J Alloys Compd 610:244–249CrossRefGoogle Scholar
  10. 10.
    Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21CrossRefGoogle Scholar
  11. 11.
    Wang L, Zhu H, Hou H, Zhang Z, Xiao X, Song Y (2012) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. J Solid State Electrochem 16:1693–1700CrossRefGoogle Scholar
  12. 12.
    Liu X, Li Z, Zhao C, Zhao W, Yang J, Wang Y, Li F (2014) Facile synthesis of core-shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent. J Colloid Interface Sci 419:9–16CrossRefGoogle Scholar
  13. 13.
    Wang Z, Zhao S, Zhu S, Sun Y, Fang M (2011) Photocatalytic synthesis of M/Cu2O (M = Ag, Au) heterogeneous nanocrystals and their photocatalytic properties. CrystEngComm 13:2262–2267CrossRefGoogle Scholar
  14. 14.
    Chen Y, Yu L, Feng D, Zhuo M, Zhang M, Zhang E, Xu Z, Li Q, Wang T (2012) Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres, Sensors & Actuators: B. Chemical 166-167:61–67Google Scholar
  15. 15.
    Kaur N, Zappa D, Ferroni M, Poli N, Campanini M, Negrea R, Comini E (2018) Branch-like NiO/ZnO heterostructures for VOC sensing. Sensors Actuators B Chem 262:477–485CrossRefGoogle Scholar
  16. 16.
    Yu X, Zhang G, Cao H, An X, Wang Y, Shu Z, An X, Hua F (2012) ZnO@ZnS hollow dumbbells-graphene composites as high-performance photocatalysts and alcohol sensors. New J Chem 36:2593–2598CrossRefGoogle Scholar
  17. 17.
    Kusior A, Radecka M, Rekas M, Lubecka M, Zakrzewska K, Reszka A, Kowalski BJ (2012) Sensitization of gas sensing properties in TiO2/SnO2 Nanocomposites. Procedia Engineering 47:1073–1076CrossRefGoogle Scholar
  18. 18.
    Chen A, Bai S, Shi B, Liu Z, Li D, Liu CC (2008) Methane gas-sensing and catalytic oxidation activity of SnO2–In2O3 nanocomposites incorporating TiO2. Sensors Actuators B Chem 135:7–12CrossRefGoogle Scholar
  19. 19.
    Liangyuan C, Shouli B, Guojun Z, Dianqing L, Aifan C, Liu CC (2008) Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2. Sensors Actuators B Chem 134:360–366CrossRefGoogle Scholar
  20. 20.
    Zeng Y, Bing Y-f, Liu C, Zheng W-t, Zou G-t (2012) Self-assembly of hierarchical ZnSnO3-SnO2 nanoflakes and their gas sensing properties. Trans Nonferrous Metals Soc China 22:2451–2458CrossRefGoogle Scholar
  21. 21.
    Liu J, Jin J, Deng Z, Huang S-Z, Hu Z-Y, Wang L, Wang C, Chen L-H, Li Y, Van Tendeloo G, Su B-L (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interface Sci 384:1–9CrossRefGoogle Scholar
  22. 22.
    Chen D, Yoo SH, Huang Q, Ali G, Cho SO (2012) Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance. Chem Eur J 18:5192–5200CrossRefGoogle Scholar
  23. 23.
    Sayyed IA, Thakur VV, Nikalje MD, Dewkar GK, Kotkar SP, Sudalai A (2005) Asymmetric synthesis of aryloxypropanolamines via OsO4-catalyzed asymmetric dihydroxylation. Tetrahedron 61:2831–2838CrossRefGoogle Scholar
  24. 24.
    Li Z, Chen X, Xue Z-L (2013) Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity. SCIENCE CHINA Chem 56:443–450CrossRefGoogle Scholar
  25. 25.
    Guo J-F, Ma B, Yin A, Fan K, Dai W-L (2011) Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation. Appl Catal B Environ 101:580–586CrossRefGoogle Scholar
  26. 26.
    Dai W-L, Xu H, Yang L-X, Luo X-B, Tu X-M, Luo Y (2015) Ultrasonic-assisted facile synthesis of plasmonic Ag@AgCl cuboids with high visible light photocatalytic performance for Rhodamine B degradation. React Kinet Mech Catal 115:773–786CrossRefGoogle Scholar
  27. 27.
    Fernandes JPdS, Carvalho BS, Luchez CV, Politi MJ, Brandt CA (2011) Optimization of the ultrasound-assisted synthesis of allyl 1-naphthyl ether using response surface methodology. Ultrason Sonochem 18:489–493CrossRefGoogle Scholar
  28. 28.
    Tamuly C, Hazarika M, Das J, Bordoloi M, Borah DJ, Das MR (2014) Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes. Mater Lett 123:202–205CrossRefGoogle Scholar
  29. 29.
    Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478CrossRefGoogle Scholar
  30. 30.
    Brandt CA, da Silva ACMP, Pancote CG, Brito CL, da Silveira MAB (2004) Efficient synthetic method for β-enamino esters using ultrasound. Synthesis 2004:1557–1559CrossRefGoogle Scholar
  31. 31.
    Jiang J, Zhang L (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis. Chem Eur J 17:3710–3717CrossRefGoogle Scholar
  32. 32.
    Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater 15:381–386CrossRefGoogle Scholar
  33. 33.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  34. 34.
    Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275CrossRefGoogle Scholar
  35. 35.
    Han J, Fang P, Jiang W, Li L, Guo R (2012) Ag-nanoparticle-loaded Mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir 28:4768–4775CrossRefGoogle Scholar
  36. 36.
    Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res, Sect B 268:334–340CrossRefGoogle Scholar
  37. 37.
    Wood DL, Tauc J (1972) Weak absorption tails in amorphous semiconductors. Phys Rev B 5:3144–3151CrossRefGoogle Scholar
  38. 38.
    Souza JA, Criado D, Zuniga A, Miranda VN, Ramirez FEN, Masunaga SH, Jardim RF (2013) Enhanced ferromagnetism in CuO nanowires on the top of CuO nanograins. J Appl Phys 114:173907CrossRefGoogle Scholar
  39. 39.
    Pang Y, Song L, Chen C, Ge L (2017) Cu(II) cocatalyst modified Ag@AgCl cubic cages with enhanced visible light photocatalytic activity and stability. J Mater Sci Mater Electron 28:12572–12579CrossRefGoogle Scholar
  40. 40.
    Cavalcante LS, Batista FMC, Almeida MAP, Rabelo AC, Nogueira IC, Batista NC, Varela JA, Santos MRMC, Longo E, Siu Li M (2012) Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1-xPr2x/3)WO4 crystals synthesized by the coprecipitation method. RSC Adv 2:6438–6454CrossRefGoogle Scholar
  41. 41.
    Nemade KR, Waghuley SA (2012) Study of optical band gap of CuO using Fermi’s golden rule. J Phys Conf Ser 365:012018CrossRefGoogle Scholar
  42. 42.
    Zhang W, Liu Y, Yu B, Zhang J, Liang W (2015) Effects of silver substrates on the visible light photocatalytic activities of copper-doped titanium dioxide thin films. Mater Sci Semicond Process 30:527–534CrossRefGoogle Scholar
  43. 43.
    Lee WK, Kim EJ, Hahn SH (2010) Structural and photocatalytic properties of TiO2/SiOx/TiOx multi-layer prepared by electron-beam evaporation method. Vacuum 85:30–33CrossRefGoogle Scholar
  44. 44.
    Gamage J, McEvoy W, Cui ZZ (2014) Synthesis and characterization of Ag/AgCl–activated carbon composites for enhanced visible light photocatalysis. Appl Catal B Environ 144:702–712CrossRefGoogle Scholar
  45. 45.
    W.F.J. C. P. A. B. Teixeira, Processos oxidativos avançados: conceitos teóricos. Caderno temático, 2004Google Scholar
  46. 46.
    Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes Pigments 68:133–142CrossRefGoogle Scholar
  47. 47.
    Peral J, Ollis DF (1992) Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J Catal 136:554–565CrossRefGoogle Scholar
  48. 48.
    Motta FV, Marques APA, Espinosa JWM, Pizani PS, Longo E, Varela JA (2010) Room temperature photoluminescence of BCT prepared by complex polymerization method. Curr Appl Phys 10:16–20CrossRefGoogle Scholar
  49. 49.
    Kumar D, Singh S, Khare N (2018) Plasmonic Ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting. Int J Hydrog Energy 43:8198–8205CrossRefGoogle Scholar
  50. 50.
    Sadrieyeh S, Malekfar R (2018) Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites. J Non-Cryst Solids 489:33–39CrossRefGoogle Scholar
  51. 51.
    Chen Y, Yang T, Pan H, Yuan Y, Chen L, Liu M, Zhang K, Zhang S, Wu P, Xu J (2014) Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal–metal charge transfer vs strong coupling between surface plasmon and emitters. J Am Chem Soc 136:1686–1689CrossRefGoogle Scholar
  52. 52.
    Botelho G, Andres J, Gracia L, Matos LS, Longo E (2016) Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: an experimental and theoretical investigation. ChemPlusChem 81:202–212CrossRefGoogle Scholar
  53. 53.
    Oliveira LH, Paris EC, Avansi W, Ramirez MA, Mastelaro VR, Longo E, Varela JA (2013) Correlation between photoluminescence and structural defects in Ca1+xCu3−xTi4O12 systems. J Am Ceram Soc 96:209–217CrossRefGoogle Scholar
  54. 54.
    Neto NFA, Garcia LMP, Longo E, Li MS, Paskocimas CA, Bomio MRD, Motta FV (2017) Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. J Mater Sci Mater Electron 28:12273–12281CrossRefGoogle Scholar
  55. 55.
    Zielińska-Jurek A, Wei Z, Wysocka I, Szweda P, Kowalska E (2015) The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl Surf Sci 353:317–325CrossRefGoogle Scholar
  56. 56.
    Bera RK, Mandal SM, Raj CR (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58:520–526CrossRefGoogle Scholar
  57. 57.
    Sheehy K, Casey A, Murphy A, Chambers G (2015) Antimicrobial properties of nano-silver: a cautionary approach to ionic interference. J Colloid Interface Sci 443:56–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. F. Andrade Neto
    • 1
  • E. Longo
    • 2
  • K. N. Matsui
    • 3
  • C. A. Paskocimas
    • 1
  • M. R. D. Bomio
    • 1
  • F. V. Motta
    • 1
  1. 1.LSQM, DEMATUFRNNatalBrazil
  2. 2.LIEC, DQUFSCarSão CarlosBrazil
  3. 3.LabCQ, DEQUFRNNatalBrazil

Personalised recommendations