Advertisement

Plasmonics

pp 1–8 | Cite as

Ring-Shaped Plasmonic Logic Gates

  • Daniela Dragoman
  • Elena Vlădescu
Article
  • 78 Downloads

Abstract

Ring-shaped one-, two-, and three-bit plasmonic logic gate configurations and circuits have been proposed, which, besides being compact, are also versatile and can be easily cascaded, the output logic values being controlled by both the geometry of the multi-port rings and the phase of the incident beams. This latter degree of freedom, not fully exploited up to now in plasmonic circuits, offers a high degree of flexibility of logic gate configurations.

Keywords

Plasmonics Optical computing 

Notes

Acknowledgements

This work was supported by a grant from the Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0122, within PNCDI III.

References

  1. 1.
    Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D 45:113001CrossRefGoogle Scholar
  2. 2.
    Szunerits S, Boukherroub R (eds) (2015) Introduction to plasmonics: advances and applications. Pan Stanford, New YorkGoogle Scholar
  3. 3.
    Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765CrossRefPubMedGoogle Scholar
  4. 4.
    Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2(387):387CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lu C, Hu X, Yue S, Fu Y, Yang H, Gong Q (2013) Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8:749–754CrossRefGoogle Scholar
  6. 6.
    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790CrossRefPubMedGoogle Scholar
  7. 7.
    Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt Commun 313:27–35CrossRefGoogle Scholar
  8. 8.
    Cohen M, Zalevsky Z, Shavit R (2013) Towards integrated nanoplasmonic logic circuitry. Nanoscale 5:5442–5449CrossRefPubMedGoogle Scholar
  9. 9.
    Pan D, Wei H, Xu H (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 22:9556–9562CrossRefGoogle Scholar
  10. 10.
    Yang X, Hu X, Yang H, Gong Q (2017) Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 6:365–376CrossRefGoogle Scholar
  11. 11.
    Vladescu E, Dragoman D (2018) Reconfigurable plasmonic logic gates. Plasmonics.  https://doi.org/10.1007/s11468-018-0737-z
  12. 12.
    Davis TJ, Gómez DE, Roberts A (2017) Plasmonic circuits for manipulating optical information. Nanophotonics 6:543–559Google Scholar
  13. 13.
    Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407CrossRefGoogle Scholar
  14. 14.
    Wang F, Gong Z, Hu X, Yang X, Yang H, Gong Q (2016) Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range. Sci Rep 6:24433CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2008) Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel To Quantum Electron 14:1462–1472CrossRefGoogle Scholar
  16. 16.
    Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions. IEEE Photonics J 3:220–233CrossRefGoogle Scholar
  17. 17.
    Nejati H, Beirami A (2012) Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines. Opt Lett 37:1050–1052CrossRefPubMedGoogle Scholar
  18. 18.
    Mongia RK, Bahl IJ, Bhartia P, Hong J (2007) RF and microwave coupled-line circuits, 2nd edn. Artech House, BostonGoogle Scholar
  19. 19.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  20. 20.
    Zuo C, Xia J, Sun H, Ge Y, Yuan S, Liu X (2017) Broadband acoustic logic gates in a circular waveguide with multiple ports. Appl Phys Lett 111:243501CrossRefGoogle Scholar
  21. 21.
    Xu F, Das S, Gong Y, Liu Q, Chien H-C, Chiu H-Y, Wu J, Hui R (2015) Complex refractive index tunability of graphene at 1550 nm wavelength. Appl Phys Lett 106:031109CrossRefGoogle Scholar
  22. 22.
    Eskalen H, Özğan Ş, Alver Ü, Kerli S (2015) Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys Pol A 127:756–760CrossRefGoogle Scholar
  23. 23.
    Misra NK, Kushwaha MK, Wairya S, Kumar A (2015) Cost efficient design of reversible adder circuits for low power applications. Int J Comput Appl 117(19):37–45Google Scholar
  24. 24.
    Shende VV, Markov IL (2009) On the CNOT-cost of Toffoli gates. Quantum Inf Comput 9:461–486Google Scholar
  25. 25.
    Bahadori M, Eshaghian A, Rezaei M, Hodaei H, Mehrany K (2013) Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode. IEEE J Quantum Electron 49:777–784CrossRefGoogle Scholar
  26. 26.
    Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21:2442–2446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics FacultyUniversity of BucharestBucharestRomania
  2. 2.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations