Advertisement

Plasmonics

pp 1–8 | Cite as

The Infrared (Far Terahertz) Generation by Nonlinear Interactions of Two Visible Laser Beams in a Metallic Background: Infrared Surface Plasmon Effect

  • Samaneh Safari
  • Bahram Jazi
Article

Abstract

This paper presents an investigation of infrared (IR) radiation generation by nonlinear interaction of two visible laser beams in a metallic background. Two laser beams of Gaussian and Laguerre Gaussian (LG) profiles and background metals such as silver, copper, gold, and aluminum are utilized for IR generation. Effects of laser beam characteristics and structural properties of metals on the evolution of IR electric field amplitude are examined. Considering laser frequencies in the non-transparent region give rises to generation of IR surface plasmon (IRSP). An optimized relation is proposed for achieving efficient surface plasmon waves on a metal surface.

Keywords

Laguerre Gaussian beam Harmonic generation IR surface plasmon Nonlinear interaction Far terahertz region 

References

  1. 1.
    Pozar M (2001) Microwave and RF design of wireless systems. Wiley, New Jersey, pp 81–97Google Scholar
  2. 2.
    Cameron RJ, Chandra M K, Raafat M (2015) Microwave filters for communication systems. Wiley, New YorkGoogle Scholar
  3. 3.
    Ngoya E, Larchevèque R (1996) Microwave symposium digest. IEEE MTT-S International, vol 3, p 5358310Google Scholar
  4. 4.
    Geladi P, Grahn HF (1996) Multivariate image analysis. Wiley, New YorkGoogle Scholar
  5. 5.
    Kotwaliwale N, Singh K, Kalne A, Jha SN, Seth N, Kar A (2014) X-ray imaging methods for internal quality evaluation of agricultural produce. J Food Sci Technol 51:1–15CrossRefPubMedGoogle Scholar
  6. 6.
    Belyanin AA, Capasso F, Kocharovsky V V, Kocharovsky VV, Scully M O (2001) Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence. Phys Rev A 63:053803CrossRefGoogle Scholar
  7. 7.
    Greene BI, Saeta PN, Dykaar DR, Schmitt-Rink S, Chuang SL (1992) Far-infrared light generation at semiconductor surfaces and its spectroscopic applications. IEEE J Quantum Electron 28:2302–2312CrossRefGoogle Scholar
  8. 8.
    Khalid A, Pilgrim N J, Dunn G M, Holland M C, Stanley C R, Thayne I G, Cumming D R S (2007) A planar Gunn diode operating above 100 GHz. IEEE Electron Device Lett 28:849–851CrossRefGoogle Scholar
  9. 9.
    Li C, Khalid A, Pilgrim N, Holland MC, Dunn G, Cumming DSR (2009) Novel planar Gunn diode operating in fundamental mode up to 158 GHz. J Phys Conf Ser 193:012029CrossRefGoogle Scholar
  10. 10.
    Weissler A, Cooper HW, Snyder S (1950) Chemical effect of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775CrossRefGoogle Scholar
  11. 11.
    Sudiana IN, Mitsudo S, Nishiwaki T, Susilowati PE, Lestari L, Firihu MZ, Aripin H (2015) Effect of microwave radiation on the properties of sintered oxide ceramics. Contemp Eng Sci 8:1607–1615CrossRefGoogle Scholar
  12. 12.
    Niknam A R, Banjafar M R, Jahangiri F, Barzegar S, Massudi R (2016) Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams. Phys Plasmas 23:053110CrossRefGoogle Scholar
  13. 13.
    Sobhani H (2017) Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex. Laser Phys 27:096001CrossRefGoogle Scholar
  14. 14.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRefPubMedGoogle Scholar
  15. 15.
    Maier SA, Barclay PE, Johnson TJ, Friedman MD, Painter O (2004) Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing. Appl Phys Lett 84:3990–3992CrossRefGoogle Scholar
  16. 16.
    Wang X, Zhou P, Wang X, Xiao H, Si L (2014) Multiwavelength Brillouin-thulium fiber laser. IEEE Photon J 6:1–7Google Scholar
  17. 17.
    Imai R, Kanda N, Higuchi T, Konishi K, Kuwata-Gonokami M (2014) Generation of broadband terahertz vortex beams. Opt Lett 39:3714–3717CrossRefPubMedGoogle Scholar
  18. 18.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337CrossRefPubMedGoogle Scholar
  19. 19.
    Liu H, Mehmood MQ, Huang K, Ke L, Ye H, Genevet P, Zhang M, Danner A, Yeo SP, Qiu C-W, Teng J (2014) Twisted focusing of optical vortices with broadband flat spiral zone plates. Adv Opt Mat 2:1193–1198CrossRefGoogle Scholar
  20. 20.
    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y (2013) Generation and evolution of the terahertz vortex beam. Opt Express 21:20230CrossRefPubMedGoogle Scholar
  21. 21.
    Miyamoto K, Suizu K, Akiba T, Omatsu T (2014) Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl Phys Lett 104:261104CrossRefGoogle Scholar
  22. 22.
    Miyamoto K, Kang BJ, Kim WT, Sasaki Y, Niinomi H, Suizu K, Rotermund F, Omatsu T (2016) Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Sci Rep 6:38880CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M (2012) Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry. Opt Express 20:21896–21904CrossRefPubMedGoogle Scholar
  24. 24.
    Knyazev B A, Choporova YY, Mitkov MS, Pavelyev VS, Volodkin BO (2015) Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys Rev Lett 115:163901CrossRefPubMedGoogle Scholar
  25. 25.
    Semenova V, Kulya MS, Bespalov VG (2016) Numerical simulation of broadband vortex terahertz beams propagation. J Phys Conf Ser 735:012064CrossRefGoogle Scholar
  26. 26.
    Sobhani H, Dadar E, Feili S (2017) Effective factors on twisted terahertz radiation generation in a rippled plasma. J Plasma Phys 83:655830101CrossRefGoogle Scholar
  27. 27.
    Sobhani H, Dehghan M, Dadar E (2017) Coaxial propagation of Laguerre–Gaussian (LG) and Gaussian beams in a plasma. Effect of pump depletion and cross-focusing on twisted terahertz radiation generation. Phys Plasmas 24:023110CrossRefGoogle Scholar
  28. 28.
    Misra S, Mishra SK, Brijesh P (2015) Laser Part Beams 33:123–133CrossRefGoogle Scholar
  29. 29.
    Bakhtiari F, Golmohammady S, Yousefi M, Ghafary B (2016) Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma. Phys Plasmas 23:123105CrossRefGoogle Scholar
  30. 30.
    Alexandrov AF, Bogdankevich LS, Rukhadze AA (1984) Principle of plasma electrodynamics. Springer, HeidelbergCrossRefGoogle Scholar
  31. 31.
    Jazi B, Nejati M, Salehi A (2006) The theoretical investigation of THz electromagnetic waves in a rod degenerate plasma-waveguide. Int J Infrared Millim Waves 27:1469–1495CrossRefGoogle Scholar
  32. 32.
    Misra S, Mishra SK, Brijesh P (2015) Coaxial propagation of Laguerre-Gaussian (LG) and Gaussian beams in a plasma. Laser Part Beams 33:123–133CrossRefGoogle Scholar
  33. 33.
    Shekari-Firouzjaei A, Shokri B (2017) Trapping and acceleration of hollow electron and positron bunch in a quasi-linear donut wakefield. Phys Plasmas 24:013107CrossRefGoogle Scholar
  34. 34.
    Singh RK, Kumar S, Sharma RP (2017) Generation of electromagnetic waves in the terahertz frequency range by optical rectification of a Gaussian laser pulse in a plasma in presence of an externally applied static electric field. Contrib Plasma Phys 57:252–257CrossRefGoogle Scholar
  35. 35.
    Singh RK, Singh M, Rajouria SK, Sharma RP (2017) High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma. Phys Plasmas 24 :103103CrossRefGoogle Scholar
  36. 36.
    Singh D, Malik HK (2014) Terahertz generation by mixing of two super-Gaussian laser beams in collisional Plasma. Phys Plasmas 21:083105CrossRefGoogle Scholar
  37. 37.
    Varshney P, Sajal V, Singh KP, Kumar R, Sharma N K (2015) Tunable and efficient terahertz radiation generation by photomixing of two super Gaussian laser pulses in a corrugated magnetized plasma. J Appl Phys 117:193303CrossRefGoogle Scholar
  38. 38.
    Singh M, Singh RK, Sharma RP (2013) THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL 104:35002CrossRefGoogle Scholar
  39. 39.
    Varshney P, Sajal V, Upadhyay A, Chakera JA, Kumar R (2017) Tunable terahertz radiation generation by nonlinear photomixing of cosh-Gaussian laser pulses in corrugated magnetized plasma. Laser Part Beams 35:279–285CrossRefGoogle Scholar
  40. 40.
    Sharma R P, Singh RK (2014) Terahertz generation by two cross focused laser beams in collisional plasmas. Phys Plasmas 21:073101CrossRefGoogle Scholar
  41. 41.
    Allen L, Padgett MJ (2000) The Poynting vector in LaguerreGaussian beams and the interpretation of their angular momentum density. Opt Commun 184:67–71CrossRefGoogle Scholar
  42. 42.
    Singh N P, Gupta S C, Sood B R (2002) An experiment to determine the skin depth and Fermi velocity in metals. Am J Phys 70:845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Laser and Photonics, Faculty of PhysicsUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations