Skip to main content

Advertisement

Log in

Nano-Pressure and Temperature Sensor Based on Hexagonal Photonic Crystal Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present work, two-dimensional (2D) hexagonal photonic crystal ring resonator (PCRR) structure is designed for both pressure and temperature sensing based on effective refractive index modulation of silicon. The nanosensor is designed to monitor the pressure from 0.04 to 6 GPa and temperature from 5 to 540 °C. The proposed nanosensing platform is composed of hexagonal PCRR and two inline quasi-waveguides in a 2D hexagonal lattice with circular rods arranged in air host. The hexagonal PCRR is playing a very important role in sensing the different pressure and temperature levels over a wide dynamic range. The plane wave expansion method (PWE) is implemented to calculate photonic band gap (PBG), which is used to identify the operating wavelength range of the sensor. The functional parameters of the sensor are evaluated by finite-difference time-domain method (FDTD). The functional parameters are the dynamic range, resonant wavelength, sensitivity, transmission efficiency, and quality factor. The FDTD results show that the resonant wavelength of the PCRR is red shifted with increasing the pressure and temperature. The designed sensor offers high sensitivity, high transmission efficiency and good quality factor with ultra-compact size; hence, it is extremely suitable for nanotechnology-based sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hsu T-R (2001) MEMS and microsystems design and manufacture. McGraw-Hill Inc., New York

    Google Scholar 

  2. Zhang L, Lou J, Tong L (2011) Micro/nanofiber optical sensors. Photon Sens 1(1): 31–42

    Article  CAS  Google Scholar 

  3. Zhang Y, Huang J, Lan X, Yuan L, Xiao H (2014) Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors. Opt Eng 53(6):067101

    Article  CAS  Google Scholar 

  4. Chuang Wu, Yang Zhang, Bai-Ou Guan (2011) Pressure and temperature discrimination based on dual-FBG written in micro structured fiber and standard fiber. 21st International Conference on Optical Fiber Sensors Proc. SPIE :775398

  5. Anuskiewicz A et al (2012) Sensing characteristics of the rocking filters in micro structured fibers optimized for hydrostatic pressure measurements. Opt Express 20(21):23320–23330

    Article  Google Scholar 

  6. Xu H, Hafezi M, Fan J, Taylor JM, Strouse GF, Ahmed Z (2014) Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express 22(3):3098–3104

    Article  PubMed  Google Scholar 

  7. Qiang Z, Zhou W, Soref RA (2007) Optical add-drop filters based on photonic crystal ring resonators. Opt Express 15(4):1823–1831

    Article  PubMed  Google Scholar 

  8. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143–149

    Article  CAS  Google Scholar 

  9. Robinson S, Nakkeeran R (2011) Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik 123(5):451–457

    Article  CAS  Google Scholar 

  10. Singh BR, Rawal S (2015) Photonic-crystal-based all-optical NOT logic gate. Opt Soc Am A 32(12):2260–2263

    Article  Google Scholar 

  11. Venkatachalam K, Robinson S, Dhamodharan SK (2017) Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator. Opto-Electron Rev 25(2):74–79

    Article  Google Scholar 

  12. Nair RV, Vijaya R (2010) Photonic crystal sensors: an overview. Prog Quant Electron 34(3):89–134

    Article  CAS  Google Scholar 

  13. Zhao Y, Zhang Y-n, Ri-Qing LV, Li J (2017) Electric field sensor based on photonic crystal cavity with liquid crystal infiltration. J Lightwave Technol 35(16):3440–3446

    Article  CAS  Google Scholar 

  14. Qian X, Zhao Y, Zhang Y-n, Wang Q (2016) Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors Actuators B Chem 228:665–672

    Article  CAS  Google Scholar 

  15. Jindal S, Sobti S, Kumar M, Sharma S, Pal MK (2016) Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sensors J 16(10):3705–3710

    Article  CAS  Google Scholar 

  16. Mohamed MS, Hameed MFO, Areed NFF, El-Okr MM, Obayya SSA (2016) Analysis of highly sensitive photonic crystal biosensor for glucose monitoring. ACES J 31(7):836–842

    Google Scholar 

  17. Sharma P, Sharan P (2014) Photonic crystal based ring resonator sensor for detection of glucose concentration for biomedical applications. Int J Emerg Technol Adv Eng 4(1):702–706

    Google Scholar 

  18. Chopra H, Kaler RS, Painam B (2016) Photonic crystal waveguide-based biosensor for detection of diseases. J Nanophotonics 10(3):036011

    Article  Google Scholar 

  19. Hsiao F-L, Le C (2011) Nano photonic biosensors using hexagonal nanoring resonators: computational study. J of Micro/Nanolithography, MEMS, and MOEMS 10(1):013001

    Article  CAS  Google Scholar 

  20. Robinson S, Nakkeeran R (2012) PC based optical salinity sensor for different temperatures. Photon Sens 2(2):187–192

    Article  CAS  Google Scholar 

  21. Arunkumar R, Suganya T, Robinson S (2017) Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int J Photon Opt Technol 3(1):30–33

    Google Scholar 

  22. Li B, Lee C (2011) NEMS diaphragm sensors integrated with triple-nano-ring resonator. Sens Actuators A Phys 172(1):61–68

    Article  CAS  Google Scholar 

  23. Shanthi KV, Robinson S (2014) Two-dimensional photonic crystal based sensor for pressure sensing. Photon Sens 4(3):248–253

    Article  Google Scholar 

  24. Olyaee S, Dehghani AA (2012) High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photon Sens 2(1):92–96

    Article  Google Scholar 

  25. Stomeo T et al (2007) Fabrication of force sensors based on two-dimensional photonic crystal technology. Microelectron Eng 84(5–8):1450–1453

    Article  CAS  Google Scholar 

  26. Dharchana T, Sivanantharaja A, Selvendran S (2017) Design of Pressure sensor using 2D photonic crystal. Adv Nat Appl Sci 11(7):26–30

    CAS  Google Scholar 

  27. Tinker MT, Lee JB (2005) Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Opt Express 13(18):7174–7188

    Article  CAS  PubMed  Google Scholar 

  28. Yamada S, Song B-S, Asano T, Noda S (2011) Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nano cavities. Opt Lett 36(20):3981–3983

    Article  CAS  PubMed  Google Scholar 

  29. Boruah J, Kalra Y, Sinha RK (2014) Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes. Optik 125(5):1663–1666

    Article  CAS  Google Scholar 

  30. Fu H-w, Zhao H, Qiao X-g, Li Y, Zhao D-z, Yong Z (2011) Study on a novel photonic crystal temperature sensor. Optoelectron Lett 7(6):419–422

    Article  Google Scholar 

  31. Nikoufard M, Alamouti MK, Adel A (2016) Ultra-compact photonic crystal based water temperature sensor. Photon Sens 6(3):274–278

    Article  CAS  Google Scholar 

  32. Mallika CS, Bahaddur I, Srikanth PC, Sharan P (2015) Photonic crystal ring resonator structure for temperature measurement. Optik 126(20):2252–2255

    Article  CAS  Google Scholar 

  33. Huang L, Tiana H, Yang D, Zhou J, Liu Q, Zhang P, Ji Y (2014) Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt Commun 332:42–49

    Article  CAS  Google Scholar 

  34. Goyal AK, Pal S (2015) Design and simulation of high sensitive photonic crystal waveguide sensor. Optik 126(2):240–243

    Article  CAS  Google Scholar 

  35. Dorfner DF, Hürlimann T, Zabel T, Frandsen LH, Abstreiter G (2008) Silicon photonic crystal nanostructures for refractive index sensing. Appl Phys Lett 93(18):181103

    Article  CAS  Google Scholar 

  36. Huang M (2003) Stress effects on the performance of optical waveguides. Int J Solids Struct 40(7):1615–1632

    Article  Google Scholar 

  37. Kok AAM, Vander Tol JJGM, Roel B, Smit MK (2009) Reduction of propagation loss in pillar-based photonic crystal waveguides. J Lightwave Technol 27(17):3904–3911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekar, R., Robinson, S. Nano-Pressure and Temperature Sensor Based on Hexagonal Photonic Crystal Ring Resonator. Plasmonics 14, 3–15 (2019). https://doi.org/10.1007/s11468-018-0771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0771-x

Keywords

Navigation