, Volume 13, Issue 6, pp 2345–2351 | Cite as

Effect of Configuration on the Photocatalytic Activity of AgNPs-TiO2 System

  • Huanhuan Li
  • Qingmeng Wu
  • Lihua Liu
  • Bing Zhang
  • Mengting Si
  • Zhong Li
  • Qi Jin
  • Yiqing Chen
  • Jie ShenEmail author
  • Yingcui FangEmail author


This paper studies the effect of the configuration of silver nanoparticles (AgNPs)-TiO2 on the visible-light-driven photocatalytic activity (PA). Three configurations were fabricated by vacuum thermal deposition: configuration I, AgNPs deposited on the surface of TiO2 thin films; configuration II, AgNPs deposited on a glass and covered by TiO2 thin films; and configuration III, AgNPs deposited on the surface of TiO2 thin films and covered by TiO2. The PAs of the three configurations were studied and compared. Our study indicates that configuration II is the most cost-efficient one, while configuration III could obtain the highest visible light-induced PA. The maximum of PA could be achieved when the top layer of TiO2 is less than 2 nm. The mechanisms were discussed from three aspects, the influence of TiO2 thickness on the localized surface plasma resonance (LSPR) of AgNPs, the separation, and the transportation of hot carriers. By this study, the most effective way to make use of the PA of TiO2-AgNPs was scientifically searched out.


Photocatalytic activity Configuration of AgNPs-TiO2 LSPR of AgNPs Hot electrons transportation 



This work is supported by the Natural Science Foundation of China (No. 11674081, 61671155) and the Natural Science Foundation of Anhui Province (No. 1708085MA11).

Supplementary material

11468_2018_760_MOESM1_ESM.docx (75 kb)
ESM 1 (DOCX 75.2 kb)
11468_2018_760_MOESM2_ESM.docx (79 kb)
ESM 2 (DOCX 79.4 kb)
11468_2018_760_MOESM3_ESM.docx (85 kb)
ESM 3 (DOCX 84.5 kb)
11468_2018_760_MOESM4_ESM.docx (126 kb)
ESM 4 (DOCX 125 kb)
11468_2018_760_MOESM5_ESM.docx (122 kb)
ESM 5 (DOCX 122 kb)
11468_2018_760_MOESM6_ESM.docx (115 kb)
ESM 6 (DOCX 115 kb)
11468_2018_760_MOESM7_ESM.docx (35 kb)
ESM 7 (DOCX 35.4 kb)
11468_2018_760_MOESM8_ESM.docx (180 kb)
ESM 8 (DOCX 180 kb)


  1. 1.
    Yu JG, Xiong JF, Cheng B, Liu SW (2005) Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ 60:211–221CrossRefGoogle Scholar
  2. 2.
    Liberto GD, Pifferi V, Presti LL, Ceotto M, Lg F (2017) Atomistic explanation for interlayer charge transfer in metal-semiconductor nanocomposites: the case of silver and anatase. J Phys Chem Lett 8:5372–5377CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Subrahmanyam A, Biju KP, Rajesh P, Kumar KJ, RaveendKiran M (2012) Surface modification of sol gel TiO2 surface with sputtered metallic silver for sun light photocatalytic activity: initial studies. Sol Energy Mater Sol Cells 101:241–248CrossRefGoogle Scholar
  4. 4.
    Pan DY, Li JH, Wang L, Xi C, Xue Q, Wu MH, Li Z (2013) Ag plasmonic enhancement of visible-light photoelectrocatalytic activity for defect-sensitized TiO2 nanotube arrays. Mater Lett 100:82–85CrossRefGoogle Scholar
  5. 5.
    Wang BX, Wang GZ, Wang LL (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11:523–530CrossRefGoogle Scholar
  6. 6.
    Wang BX (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron 23:4700107Google Scholar
  7. 7.
    Puigdollers AR, Schlexer P, Pacchioni G (2015) Gold and silver clusters on TiO2 and ZrO2 (101) surfaces: role of dispersion forces. J Phys Chem C 119:15381–15389CrossRefGoogle Scholar
  8. 8.
    Ko S, Banerjee CK, Sankar J (2011) Photochemical synthesis and photocatalytic activity in simulated solar light of nanosized Ag doped TiO2 nanoparticle composite. Compos Part B 42:579–583CrossRefGoogle Scholar
  9. 9.
    Paul KK, Giri PK (2017) Role of surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible light. J Phys Chem C 121:20016–20030CrossRefGoogle Scholar
  10. 10.
    Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV−irradiation. J Am Chem Soc 127:3928–3934CrossRefPubMedGoogle Scholar
  11. 11.
    Yang XH, Fu HT, An XZ (2016) Comparative study on photocatalytic and bactericidal activity between Ag@TiO2 core-shell nanoparticles and Ag@TiO2 surface doped nanostructures. IEEE International Conference on Nanotechnology: IEEE-NANOGoogle Scholar
  12. 12.
    Zhang N, Liu S, Xu YJ (2012) Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nano 4:2227–2238Google Scholar
  13. 13.
    Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680CrossRefPubMedGoogle Scholar
  14. 14.
    Chen JJ, Wu JCS, Wu PC, Tsai DP (2012) Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR. J Phys Chem C 116:26535–26542CrossRefGoogle Scholar
  15. 15.
    Kamakshi K, Silva JPB, Sekhar KC, Agostinho Moreira J, Almeida A, Pereira M, Gomes MJM (2017) Substrate temperature effect on microstructure, optical, and glucose sensing characteristics of pulsed laser deposited silver nanoparticles. Plasmonics. CrossRefGoogle Scholar
  16. 16.
    Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11:941–951CrossRefPubMedGoogle Scholar
  17. 17.
    Chen H, Blaber MG, Standridge SD, Demarco EJ, Hupp JT, Ratner MA, Schatz GC (2012) Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell. J Phys Chem C 116:10215–10221CrossRefGoogle Scholar
  18. 18.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293CrossRefPubMedGoogle Scholar
  19. 19.
    Gole JL, Stout JD, Burda C, Lou Y, Chen X (2003) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240CrossRefGoogle Scholar
  20. 20.
    Bei ZM, Ren DS, Cui XL, Shen J, Yang XL, Zhang ZJ (2004) Photoelectrochemical properties and crystalline structure change of Sb-doped TiO2 thin films prepared by the sol-gel method. J Mater Res 19:3189–3195CrossRefGoogle Scholar
  21. 21.
    Luo SY, Yan BX, Shen J (2012) Enhancement of photoelectric and photocatalytic activities: Mo doped TiO2 thin films deposited by sputtering. Thin Solid Films 522:361–365CrossRefGoogle Scholar
  22. 22.
    Manifacier JC, Gasiot J, Fillard JP (1976) A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J Phys E Sci Instrum 9:1002–1004CrossRefGoogle Scholar
  23. 23.
    Bai S, Jiang J, Zhang Q, Xiong YJ (2015) Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 44:2893–2939CrossRefPubMedGoogle Scholar
  24. 24.
    Moula G, Rodriguez-Oliveros R, Albella P, Sanchez-Gil JA, Aroca RF (2012) Plasmonics and single-molecule detection in evaporated silver-island films. Ann Phys 524:697–704CrossRefGoogle Scholar
  25. 25.
    Jakob M, Levanon H, Kamat PV (2003) Charge distribution between uv-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett 3:353–358CrossRefGoogle Scholar
  26. 26.
    Fang YC, Zhang B, Hong L, Zhang K, Li GP, Jiang J, Yan R, Chen JL (2016) Mechanism of photocatalytic activity improvement of AgNPs/TiO2 by oxygen plasma oxidation. Nano 8:17004–17011Google Scholar
  27. 27.
    Tan SJ, Feng H, Ji YF, Wang Y, Zhao J, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2012) Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1 × 1 surface. J Am Chem Soc 134:9978–9985CrossRefPubMedGoogle Scholar
  28. 28.
    Kelly KL, Coronado E, Lin LZ, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  29. 29.
    Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401CrossRefPubMedGoogle Scholar
  30. 30.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395CrossRefPubMedGoogle Scholar
  31. 31.
    Du P, Ma L, Cao YH, Li D, Liu ZY, Wang ZX, Sun ZC (2014) Stable Ag@oxides nanoplates for surface-enhanced Raman spectroscopy of amino acids. ACS Appl Mater Interfaces 6:8853–8858CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Vacuum Science and TechnologyHefei University of TechnologyHefeiChina
  2. 2.Department of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  3. 3.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations