Advertisement

Plasmonics

pp 1–6 | Cite as

Light Funneling Profile During Enhanced Transmission Through a Subwavelength Metallic Slit

  • Jing-Wei Li
  • Jian-Shiung Hong
  • Wei-Ting Chou
  • Ding-Jie Huang
  • Kuan-Ren Chen
Article
  • 56 Downloads

Abstract

The funneling profile of enhanced light transmission through a subwavelength slit in a perfect electric conductor is studied with finite-difference time-domain simulation. From the wave-charge interaction dynamics, it is found that the EM wave energy is funneled while charges are accumulated at the edges of the slit. The Poynting vector indicates a boundary within which the wave energy flows toward the slit. Therefore, a funneling profile is defined by this boundary; as the slit width and thickness determine the transmitted energy density, the size of the funneling area is a relevant quantity of major concern.

Keywords

Subwavelength slit Light funneling Fabry-Pérot resonance 

Notes

Acknowledgments

The authors are grateful for support from Ministry of Science and Technology, Taiwan (MOST 104-2112-M-006-004-MY3) and computational resources at National Center for High-performance Computing (NCHC) of National Applied Research Laboratories (NARLabs) of Taiwan.

References

  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  2. 2.
    Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848CrossRefGoogle Scholar
  3. 3.
    Thio T, Pellerin KM, Linke RA, Lezec HJ, Ebbesen TW (2001) Enhanced light transmission through a single subwavelength aperture. Opt Lett 26(24):1972–1974CrossRefGoogle Scholar
  4. 4.
    García-Vidal FJ, Martín-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412CrossRefGoogle Scholar
  5. 5.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297(5582):820–822CrossRefGoogle Scholar
  6. 6.
    Garcı́a-Vidal FJ, Martı́n-Moreno L, Lezec HJ, Ebbesen TW (2003) Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl Phys Lett 83(22):4500–4502CrossRefGoogle Scholar
  7. 7.
    Martín-Moreno L, García-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW (2003) Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett 90(16):167401CrossRefGoogle Scholar
  8. 8.
    Chen KR (2010) Focusing of light beyond the diffraction limit of half the wavelength. Opt Lett 35(22):3763–3765CrossRefGoogle Scholar
  9. 9.
    Chen KR, Chu WH, Fang HC, Liu CP, Huang CH, Chui HC, Chuang CH, Lo YL, Lin CY, Hwung HH, Fuh AYG (2011) Beyond-limit light focusing in the intermediate zone. Opt Lett 36(23):4497–4499CrossRefGoogle Scholar
  10. 10.
    Yuan G, Rogers ETF, Roy T, Adamo G, Shen Z, Zheludev NI (2014) Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci Rep 4:6333CrossRefGoogle Scholar
  11. 11.
    Zhang X, Yan L, Guo Y, Pan W, Luo B, Luo X (2016) Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination. Plasmonics 11(1):109–115CrossRefGoogle Scholar
  12. 12.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  13. 13.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90CrossRefGoogle Scholar
  14. 14.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 308(5721):534–537CrossRefGoogle Scholar
  15. 15.
    Catrysse PB, Wandell BA (2003) Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology. J Opt Soc Am A 20(12):2293–2306CrossRefGoogle Scholar
  16. 16.
    Xu T, Wu Y-K, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59Google Scholar
  17. 17.
    Takakura Y (2001) Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 86(24):5601–5603CrossRefGoogle Scholar
  18. 18.
    Bravo-Abad J, Martín-Moreno L, García-Vidal FJ (2004) Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit. Phys Rev E 69(2):026601CrossRefGoogle Scholar
  19. 19.
    Xie Y, Zakharian A, Moloney J, Mansuripur M (2004) Transmission of light through slit apertures in metallic films. Opt Express 12(25):6106–6121CrossRefGoogle Scholar
  20. 20.
    Lalanne P, Hugonin JP, Rodier JC (2005) Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95(26):263902CrossRefGoogle Scholar
  21. 21.
    García-Vidal F, Moreno E, Porto J, Martín-Moreno L (2005) Transmission of light through a single rectangular hole. Phys Rev Lett 95(10):103901CrossRefGoogle Scholar
  22. 22.
    Nikitin AY, Zueco D, García-Vidal FJ, Martín-Moreno L (2008) Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness. Phys Rev B 78(16):165429CrossRefGoogle Scholar
  23. 23.
    Sturman B, Podivilov E, Gorkunov M (2010) Transmission and diffraction properties of a narrow slit in a perfect metal. Phys Rev B 82(11):115419CrossRefGoogle Scholar
  24. 24.
    Chang S-H, Su Y-L (2015) Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission. J Opt Soc Am B 32(1):38–44CrossRefGoogle Scholar
  25. 25.
    Chang S-H, Su Y-L (2015) Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonant transmission. J Opt Soc Am B 32(1):45–51CrossRefGoogle Scholar
  26. 26.
    Astilean S, Lalanne P, Palamaru M (2000) Light transmission through metallic channels much smaller than the wavelength. Opt Commun 175(4–6):265–273CrossRefGoogle Scholar
  27. 27.
    Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848CrossRefGoogle Scholar
  28. 28.
    Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452:728–731CrossRefGoogle Scholar
  29. 29.
    van Beijnum F, Rétif C, Smiet CB, Liu H, Lalanne P, van Exter MP (2012) Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492:411–414CrossRefGoogle Scholar
  30. 30.
    García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90(21):213901CrossRefGoogle Scholar
  31. 31.
    Thomas DA, Hughes HP (2004) Enhanced optical transmission through a subwavelength 1D aperture. Solid State Commun 129(8):519–524CrossRefGoogle Scholar
  32. 32.
    Shi H, Dong X, Lv Y, Du C (2009) Multi-interaction of surface wave between subwavelength grooves surrounding a single metallic slit. Appl Phys B Lasers Opt 95(2):345–350CrossRefGoogle Scholar
  33. 33.
    Hong J-S, Chen K-R (2017) Light diffraction by a slit and grooves with a point source model based on wave dynamics. Phys Rev A 96(4):043813CrossRefGoogle Scholar
  34. 34.
    Subramania G, Foteinopoulou S, Brener I (2011) Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett 107(16):163902CrossRefGoogle Scholar
  35. 35.
    Goncharenko AV, Kim KY, Hong J-S, Chen K-R (2012) Complex mechanism of enhanced optical transmission through a composite coaxial/circular aperture. Plasmonics 7(3):417–426CrossRefGoogle Scholar
  36. 36.
    Hong J-S, Chen AE, Chen K-R (2015) Modulated light transmission through a subwavelength slit at early stage. Opt Express 23(8):9901–9910CrossRefGoogle Scholar
  37. 37.
    Bouchon P, Pardo F, Portier B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J-L (2011) Total funneling of light in high aspect ratio plasmonic nanoresonators. Appl Phys Lett 98(19):191109CrossRefGoogle Scholar
  38. 38.
    Zhu P, Jin P, Shi H, Guo LJ (2013) Funneling light into subwavelength grooves in metal/dielectric multilayer films. Opt Express 21(3):3595–3602CrossRefGoogle Scholar
  39. 39.
    Sounas DL, Alù A (2016) Color separation through spectrally-selective optical funneling. ACS Photonics 3(4):620–626CrossRefGoogle Scholar
  40. 40.
    Wuenschell J, Kim HK (2008) Excitation and propagation of surface plasmons in a metallic nanoslit structure. IEEE Trans Nanotechnol 7(2):229–236CrossRefGoogle Scholar
  41. 41.
    Xi Y, Jung YS, Kim HK (2010) Interaction of light with a metal wedge: the role of diffraction in shaping energy flow. Opt Express 18(3):2588–2600CrossRefGoogle Scholar
  42. 42.
    Pardo F, Bouchon P, Haïdar R, Pelouard J-L (2011) Light funneling mechanism explained by magnetoelectric interference. Phys Rev Lett 107(9):093902CrossRefGoogle Scholar
  43. 43.
    Adams DC, Inampudi S, Ribaudo T, Slocum D, Vangala S, Kuhta NA, Goodhue WD, Podolskiy VA, Wasserman D (2011) Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys Rev Lett 107(13):133901CrossRefGoogle Scholar
  44. 44.
    Betzig E, Harootunian A, Lewis A, Isaacson M (1986) Near-field diffraction by a slit—implications for superresolution microscopy. Appl Opt 25(12):1890–1900CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jing-Wei Li
    • 1
  • Jian-Shiung Hong
    • 1
  • Wei-Ting Chou
    • 1
  • Ding-Jie Huang
    • 1
  • Kuan-Ren Chen
    • 1
  1. 1.Department of PhysicsNational Cheng Kung UniversityTainanTaiwan, Republic of China

Personalised recommendations