Advertisement

Plasmonics

pp 1–6 | Cite as

Surface Plasmon Resonance Enhanced the Transverse Magneto-optical Kerr Effect in One-dimensional Magnetoplasmonic Nanostructure

  • Chengxin Lei
  • Sihao Wang
  • Leyi Chen
  • Zhixiong Tang
  • Shaolong Tang
  • Youwei Du
Article
  • 115 Downloads

Abstract

The properties of the optics and transverse magneto-optical Kerr effect (TMOKE) of one-dimensional magnetoplasmonic nanostructures are experimentally investigated. It shows that the resonant dips of the reflectance spectra and the enhancement of the TMOKE of the designed structures are attributed to the excitation and the coupling of the localized surface plasmon (LSP) and surface plasmon polariton (SPP) modes. Moreover, the insertion of the nonmagnetic dielectric SnO2 layer into the quadrilayer structure of Ag/Co/SnO2/Ag can not only pronouncedly enhance the TMOKE signals of the sample but also prompt their resonant positions to generate a blueshift. It has been demonstrated that the enhancement of the TMOKE signal and the blueshift of the resonant wavelength of the TMOKE stems from the coupling of SPP of the two different interfaces of the silver film.

Keywords

Transverse magneto-optical Kerr effect (TMOKE) Surface plasmons Plasmonics 

Notes

Funding Information

The authors received support from the National Natural Science Foundation of China (Grant No. 11374146) and the National Key Project of Fundamental Research of China (Grant No. 2012CB932304).

References

  1. 1.
    Polman A (2008) Plasmonics applied. Science 322:868–869CrossRefGoogle Scholar
  2. 2.
    Armelles G, Cebollada A, García-Martín A, González MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10–35CrossRefGoogle Scholar
  3. 3.
    Murzina TV, Kolmychek IA, Nikulin AA, Gan’Shina EA, Aktsipetrov OA (2009) Plasmonic and magnetic effects accompanying optical second-harmonic generation in Au/Co/Au nanodisks. JETP Lett 90(7):504–508CrossRefGoogle Scholar
  4. 4.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  5. 5.
    Zvezdin AK, Kotov VA (1997) Modern magnetooptics and magnetooptical materials. Taylor and Francis, LondonCrossRefGoogle Scholar
  6. 6.
    Inoue M, Arai K, Fujii T, Abe M (1999) One-dimensional magnetophotonic crystals. J Appl Phys 85(8):5768–5771CrossRefGoogle Scholar
  7. 7.
    Belotelov VI, Zvezdin AK (2005) Magneto-optical properties of photonic crystals. J Opt Soc Am B 22(1):286–292CrossRefGoogle Scholar
  8. 8.
    Ferguson PE, Stafsudd OM, Wallis RF (1977) Surface magnetoplasma waves in nickel. Physica B+C 86:1403–1405CrossRefGoogle Scholar
  9. 9.
    Stegeman GI, Burke JJ, Hall DG (1983) Surface-polaritonlike waves guided by thin, lossy metal films. Opt Lett 8(7):383–385CrossRefGoogle Scholar
  10. 10.
    Hickernell RK, Sarid D (1987) Long-range surface magnetoplasmons in thin nickel films. Opt Lett 12(8):570–572CrossRefGoogle Scholar
  11. 11.
    González-Díaz JB, García-Martín A, Armelles G, García-Martín JM, Clavero C, Cebollada A, Lukaszew RA, Skuza JR, Kumah DP, Clarke R (2007) Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys Rev B 76:153402CrossRefGoogle Scholar
  12. 12.
    Vila EF, Bendana Sueiro XM, González-Díaz JB, García-Martín A, García-Martín JM, Cebollada Navarro A, Armelles Reig G, Meneses Rodriguez D, Sandoval EM (2008) Surface plasmon resonance effects in the magneto-optical activity of Ag–Co–Ag trilayers. IEEE Trans Magn 44(11):3303–3306CrossRefGoogle Scholar
  13. 13.
    Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin JM, Thomay T, Leitenstorfer A, Bratschitsch R (2010) Active magneto-plasmonics in hybrid metal ferromagnet structures. Nat Photon 4(4):107–111CrossRefGoogle Scholar
  14. 14.
    Clavero C, Yang K, Skuza JR, Lukaszew RA (2010) Magnetic-field modulation of surface plasmon polaritons on gratings. Opt Lett 35:1557–1559CrossRefGoogle Scholar
  15. 15.
    Grunin AA, Zhdanov AG, Ezhov AA, Ganshina EA, Fedyanin AA (2010) Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings. Appl Phys Lett 97:261908CrossRefGoogle Scholar
  16. 16.
    Newman DM, Wears ML, Matelon RJ, Hooper IR (2008) Magneto-optic behaviour in the presence of surface plasmons. J Phys Condens Matter 20:345230CrossRefGoogle Scholar
  17. 17.
    Aers GC, Boardman AD (2001) The theory of semiconductor magnetoplasmon-polariton surface modes: Voigt geometry. J Phy C 11(5):945–959CrossRefGoogle Scholar
  18. 18.
    Strelniker YM, Bergman DJ (2008) Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field. Phys Rev B 77:205113CrossRefGoogle Scholar
  19. 19.
    Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M (2011) Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol 6:370–376CrossRefGoogle Scholar
  20. 20.
    Kreilkamp LE, Belotelov VI, Chin JY, Neutzner S, Dregely D, Wehlus T, Akimov IA, Bayer M, Stritzker B, Giessen H (2013) Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys Rev X 3:041019Google Scholar
  21. 21.
    Pohl M, Kreilkamp LE, Belotelov VI, Akimov IA, Kalish AN, Khokhlov NE, Yallapragada VJ, Gopal AV, Nur-E-Alam M, Vasiliev M, Yakovlev DR, Alameh K, Zvezdin AK, Bayer M (2013) Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals. New J Phys 15:075024CrossRefGoogle Scholar
  22. 22.
    Belotelov VI, Bykov DA, Doskolovich LL, Kalish AN, Zvezdin AK (2010) Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method. J Exp Theor Phys 110(5):816–824CrossRefGoogle Scholar
  23. 23.
    Yu B, Woo J, Kong M, O’Carroll DM (2015) Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. Nano 7:13196–13206Google Scholar
  24. 24.
    Farhang A, Bigler N, Martin OJF (2013) Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film. Opt Lett 38:4758–4761CrossRefGoogle Scholar
  25. 25.
    Kalachyova Y, Mares D, Jerabek V, Zaruba K, Ulbrich P, Lapcak L, Svorcik V, Lyutakov O (2016) The effect of silver grating and nanoparticles grafting for LSP-SPP coupling and SERS response intensification. J Phys Chem C 120:10569–10577CrossRefGoogle Scholar
  26. 26.
    Torrado JF, González-Díaz JB, González MU, García-Martín A, Armelles G (2010) Magneto-optical effects in interacting localized and propagating surface plasmon modes. Opt Express 18:15635–15642CrossRefGoogle Scholar
  27. 27.
    Kolmychek IA, Murzina TV, Aktsipetrov OA (2009) Nonlinear magneto-optical transversal Kerr effect in magneto-plasmonic nanosandwiches. Proc SPIE 7394:739424CrossRefGoogle Scholar
  28. 28.
    Belotelov VI, Bykov DA, Doskolovich LL, Kalish AN, Zvezdin AK (2009) Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. J Opt Soc Am B 26:1594–1598CrossRefGoogle Scholar
  29. 29.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar
  30. 30.
    Kim SH, Park J, Lee K (2006) Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display. Nanotechnology 17:4436–4438CrossRefGoogle Scholar
  31. 31.
    Rui Hu Y, Qian S, Peng W (2015) Dual band bandpass filter based on compound metallic grating waveguide structure. Opt Commun 336:110–115CrossRefGoogle Scholar
  32. 32.
    D. W. Lynch, and W. R. Hunter, Comments on the optical constants of metals and an introduction to the data, E. D. Palik, ed. (Academic, 1985), pp 286–295Google Scholar
  33. 33.
    Dmitriev A, Pakizeh T, Käll M, Sutherland DS (2007) Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. Small 3:294–299CrossRefGoogle Scholar
  34. 34.
    Ekinci Y, Christ A, Agio M, Martin OJF, Solak HH, Löffler JF (2008) Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt Express 16:13287–13295CrossRefGoogle Scholar
  35. 35.
    Pakizeh T, Dmitriev A, Abrishamian MS, Granpayeh N, Käll M (2008) Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. J Opt Soc Am B 25:659–667CrossRefGoogle Scholar
  36. 36.
    Dong Y, Zhang X (2009) Enhanced magneto-optical Kerr effect in magnetic multilayers containing double-negative metamaterials. J Appl Phys 105:054105CrossRefGoogle Scholar
  37. 37.
    Ghanaatshoar M, Moradi M (2011) Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films. Opt Eng 50:093801CrossRefGoogle Scholar
  38. 38.
    Tang ZH, Peng RW, Wang Z, Wu X, Bao YJ, Wang QJ, Zhang ZJ, Sun WH, Wang M (2007) Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays. Phys Rev B 76:195405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of physics and optoelectronic engineeringShandong University of TechnologyZiboChina
  2. 2.Jiangsu Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures and Department of PhysicsNanjing UniversityNanjingChina

Personalised recommendations