Skip to main content
Log in

Nanoantenna-Enhanced Radiative and Anisotropic Decay Rates in Monolayer-Quantum Dots

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nanoantenna-enhanced ultrafast emission from colloidal quantum dots as quantum emitters is required for fast quantum communications. On-chip integration of such devices requires a scalable and high-throughput technology. We report self-assembly lithography technique of preparing hybrid of gold nanorods antenna over a compact CdSe quantum dot monolayer. We demonstrate resonant and nonresonant gold nanorod antenna-enhanced radiative and anisotropic decay. Extensive simulations explain the mechanism of the decay rates and the role of antenna in both random and compact monolayers of quantum dots. The study could find applications in quantum dot display and quantum communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoang TB, Akselrod GM, Mikkelsen MH (2016) Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett 16:270

    Article  CAS  Google Scholar 

  2. Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888

    Article  CAS  Google Scholar 

  3. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83

    Article  CAS  Google Scholar 

  4. Eggleston MS, Messer K, Zhang L, Yablonovitch E, Wu MC (2015) Optical antenna enhanced spontaneous emission. Proc Natl Acad Sci USA 112:1704

    Article  CAS  Google Scholar 

  5. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Advances in Optics and Photonics 1:438

    Article  Google Scholar 

  7. Neogi A, Morkoç H, Kuroda T, Tackeuchi A (2005) Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons. Opt Lett 30:93

    Article  CAS  Google Scholar 

  8. Haridas M, Basu JK, Gosztola DJ, Wiederrecht GP (2010) Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays. Appl Phys Lett 97:83307

    Article  Google Scholar 

  9. Russell KJ, Liu T-L, Cui S, Hu EL (2012) Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photonics 6:459

    Article  CAS  Google Scholar 

  10. Tripathi LN, Praveena M, Basu JK (2013) Plasmonic tuning of photoluminescence from semiconducting quantum dot assemblies. Plasmonics 8:657

    Article  CAS  Google Scholar 

  11. Haridas M, Tripathi LN, Basu JK (2011) Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays. Appl Phys Lett 98:063305

    Article  Google Scholar 

  12. Tripathi LN, Praveena M, Valson P, Basu JK (2014) Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna. Appl Phys Lett 105:163106

    Article  Google Scholar 

  13. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183

    Article  CAS  Google Scholar 

  14. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414

    Article  CAS  Google Scholar 

  15. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Berlin

    Book  Google Scholar 

  16. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  17. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the Department of Science and Technology (Nanomission), India, for the financial support and Advanced Facility for Microscopy and Microanalysis, Indian Institute of Science, Bangalore, for access to TEM measurements. M. Praveena acknowledges UGC, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Narayan Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, L.N., Praveena, M., Johns, B. et al. Nanoantenna-Enhanced Radiative and Anisotropic Decay Rates in Monolayer-Quantum Dots. Plasmonics 13, 1811–1816 (2018). https://doi.org/10.1007/s11468-018-0695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0695-5

Keywords

Navigation