Skip to main content
Log in

Quantitative Detection of Thiopurines by Inter-particle Distance-Dependent Properties of Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

As thiopurines are the source of chemotherapeutic drug which is helpful in treating acute lymphoblastic leukaemia, so the proper quantification of different purines is essential. As plasmonic nanoparticles (NPs) reported as colorimetric sensor due to their inter-particle variation in the presence of biomolecules. Here we have synthesised four different sizes (8–30 nm) gold nanoparticles (AuNPs) and chose as the analytical tool for the quantification of different purines. The characterisation of synthesised AuNPs was done by using FT-IR, TEM, DLS, EDS and UV-Vis spectroscopy. They showed remarkable stability for 10–15 days in the presence of long-range pH (3–12) and high concentration of the salt solution (100 μl, 0.1 M NaCl). Study of SPR variation was done for the quantification of purines. It has been seen that as the particle size, the concentration of purine and pH of the solution varies then SPR peak ~ 521 nm of AuNPs undergoes red shift and intensity of existing peak get reduced with time. The appearance of this new peak at ~ 700 nm justified the sensitivity of AuNPs towards purines. It was observed that the larger size AuNPs (30 nm) is more sensitive for detecting different purines at very low concentration (10−7 M for 6-thioguanine and 6-mercaptopurine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336(8709):225–229. https://doi.org/10.1016/0140-6736(90)91745-V

    Article  CAS  PubMed  Google Scholar 

  2. Al-Ghobashy MA, Hassan SA, Abdelaziz DH, Elhosseiny NM, Sabry NA, Attia AS, el-Sayed MH (2016) Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: correlation with genetic polymorphism. J Chromatogr B Anal Technol Biomed Life Sci 1038:88–94. https://doi.org/10.1016/j.jchromb.2016.10.035

    Article  CAS  Google Scholar 

  3. Munshi P, Lubin M, Bertino J (2014) 6-thioguanine: a drug with unrealized potential for cancer therapy. Oncologist 19(7):760–765. https://doi.org/10.1634/theoncologist.2014-0178

    Article  CAS  Google Scholar 

  4. Sean CS (2009) Martindale: the complete drug reference, 34th edn. Pharmaceutical Press, London, 884–886

  5. Oancea I, Png CW, Das I, Lourie R, Winkler IG, Eri R, Subramaniam N, Jinnah HA, McWhinney BC, Levesque JP, McGuckin MA, Duley JA, Florin THJ (2013) A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut 62(4):594–605. https://doi.org/10.1136/gutjnl-2012-302274

    Article  CAS  PubMed  Google Scholar 

  6. Tack GJ, Asseldonk DP, Wanrooij RLJ, Bodegraven AA, Mulder CJ (2012) Tioguanine in the treatment of refractory coeliac disease - a single centre experience. Aliment Pharmacol Ther 36(3):274–281. https://doi.org/10.1111/j.1365-2036.2012.05154.x

    Article  CAS  PubMed  Google Scholar 

  7. Fishman M, Mrozek-Orlowski M (1999) Cancer Chemotherapy Guidelines and Recommendations for Practice, 2nd edn. Oncology Nursing Press Inc, Pittsburgh PA, pp 25

  8. Madueño R, Pineda T, Sevilla JM, Blázquez M (2004) An electrochemical study of 6-thioguanine monolayers on a mercury electrode in acid and neutral solutions. J Electroanal Chem 565(2):301–310. https://doi.org/10.1016/j.jelechem.2003.10.024

    Article  CAS  Google Scholar 

  9. Rowland K, Lennard L, Lilleyman JS (1998) High-performance liquid chromatographic assay of methylthioguanine nucleotide. J Chromatogr B Biomed Sci Appl 705(1):29–37. https://doi.org/10.1016/S0378-4347(97)00495-7

    Article  CAS  PubMed  Google Scholar 

  10. Mawatari H, Kato Y, Nishimura SI et al (1998) Reversed-phase high-performance liquid chromatographic assay method for quantitating 6-mercaptopurine and its methylated and non-methylated metabolites in a single sample. J Chromatogr B Biomed Appl 716(1-2):392–396. https://doi.org/10.1016/S0378-4347(98)00329-6

    Article  CAS  Google Scholar 

  11. Keuzenkamp-Jansen CW, De Abreu RA, Bökkerink JPM, Trijbels JMF (1995) Determination of extracellular and intracellular thiopurines and methylthiopurines by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 672(1):53–61. https://doi.org/10.1016/0378-4347(95)00206-X

    Article  CAS  Google Scholar 

  12. Lennard L, Singleton HJ (1992) High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr B Biomed Sci Appl 583(1):83–90. https://doi.org/10.1016/0378-4347(92)80347-S

    Article  CAS  Google Scholar 

  13. Lennard L (1987) Assay of 6-thioinosinic acid and 6-thioguanine nucleotides, active metabolites of 6_mercaptopurine, in human red blood cells. J Chromatogr Biomed Appl Elsevier Sci Publ BV 423:169–178. https://doi.org/10.1016/0378-4347(87)80340-7

    Article  CAS  Google Scholar 

  14. Lennard L (1985) Assay of 6-mercaptopurine in human plasma. J Chromatogr B Biomed Sci Appl 345:441–446. https://doi.org/10.1016/0378-4347(85)80186-9

    Article  CAS  Google Scholar 

  15. Lavi LE, Holcenberg JS (1985) A rapid and sensitive high-performance liquid chromatographic assay for 6-mercaptopurine metabolites in red blood cells. Anal Biochem 144(2):514–521. https://doi.org/10.1016/0003-2697(85)90148-4

    Article  CAS  PubMed  Google Scholar 

  16. Basu S, Ghosh SK, Kundu S, Panigrahi S, Praharaj S, Pande S, Jana S, Pal T (2007) Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling. J Colloid Interface Sci 313(2):724–734. https://doi.org/10.1016/j.jcis.2007.04.069

    Article  CAS  PubMed  Google Scholar 

  17. Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A (2004) The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 108(13):4046–4052. https://doi.org/10.1021/jp037056a

    Article  CAS  Google Scholar 

  18. Lubomirsky I, Wang TY, Gartsman K et al (2000) Biologically programmed nanoparticle assembly. Adv Mater 12(2):147–150. https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<147::AID-ADMA147>3.0.CO;2-U

    Article  Google Scholar 

  19. Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29(4):267–273. https://doi.org/10.1039/a705397e

    Article  CAS  Google Scholar 

  20. Bright RM, Walter DG, Musick MD, Jackson MA, Allison KJ, Natan MJ (1996) Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: approaches to uniformly-sized surface features with Ag-like optical properties. Langmuir 12(3):810–817. https://doi.org/10.1021/la950429h

    Article  CAS  Google Scholar 

  21. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101(19):3706–3712. https://doi.org/10.1021/jp962922n

    Article  CAS  Google Scholar 

  22. Takeuchi Y, Ida T, Kimura K (1996) Temperature effect on gold nanodispersion in organic liquids. Surf Rev Lett 3(01):1205–1208. https://doi.org/10.1142/S0218625X96002175

    Article  CAS  Google Scholar 

  23. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700. https://doi.org/10.1016/0039-6028(85)90239-0

    Article  CAS  Google Scholar 

  24. Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Abstr Pap Am Chem Soc 223:U74–U74

    Google Scholar 

  25. Andrew Lyon L, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70(24):5177–5183. https://doi.org/10.1021/ac9809940

    Article  Google Scholar 

  26. Musick MD, Keating CD, Lyon LA, Botsko SL, Peña DJ, Holliway WD, McEvoy TM, Richardson JN, Natan MJ (2000) Metal films prepared by stepwise assembly. 2. Construction and characterization of colloidal Au and Ag multilayers. Chem Mater 12(10):2869–2881. https://doi.org/10.1021/cm990714c

    Article  CAS  Google Scholar 

  27. Storhoff JJ, Mucic RC, Mirkin CA (1997) Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials. J Clust Sci 8:179–216. https://doi.org/10.1023/A:1022632007869

    Article  CAS  Google Scholar 

  28. Freeman RG, Grabar KC, Allison KJ et al (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267(80):1629–1632. https://doi.org/10.1126/science.267.5204.1629

    Article  CAS  PubMed  Google Scholar 

  29. Taton T, Mirkin C, Letsinger R (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760. https://doi.org/10.1126/science.289.5485.1757

    Article  CAS  PubMed  Google Scholar 

  30. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 7863(9):1959–1964. https://doi.org/10.1021/ja972332i

    Article  Google Scholar 

  31. Elghanian R, Storhoff JJ, Mucic RC et al (2010) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1078(80):1078–1081. https://doi.org/10.1126/science.277.5329.1078

    Article  Google Scholar 

  32. Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 15(1):66–76. https://doi.org/10.1021/la9808420

    Article  CAS  Google Scholar 

  33. Physik ADER, Vol N (1908) Beiträge zur Optik trüber Medien, speziell kolloidaller Metallösungen; von Gustav Mie. Ann Phys 25:1–52

    Google Scholar 

  34. Basu S, Pande S, Jana S, et al (2008) Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates. Langmuir 8276–8282. https://doi.org/10.1021/la8000784

    Article  CAS  Google Scholar 

  35. Park J, Shumaker-parry JS (2005) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. Langmuir 21(21):1–33. https://doi.org/10.1021/la0504560

    Article  CAS  Google Scholar 

  36. Park JW, Shumaker-Parry JS (2014) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc 136(5):1907–1921. https://doi.org/10.1021/ja4097384

    Article  CAS  PubMed  Google Scholar 

  37. Olesen KM, Hansen SH, Sidenius U, Schmiegelow K (2008) Determination of leukocyte DNA 6-thioguanine nucleotide levels by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 864(1-2):149–155. https://doi.org/10.1016/j.jchromb.2008.02.007

    Article  CAS  Google Scholar 

  38. Warren DJ, Slørdal L (1993) A high-performance liquid chromatographic method for the determination of 6-thioguanine residues in DNA using precolumn derivatization and fluorescence detection. Anal Biochem 215(2):278–283. https://doi.org/10.1006/abio.1993.1587

    Article  CAS  PubMed  Google Scholar 

  39. Thomas A (1976) Spectrofluorometric determination of thiopurines—I: 6-Thioguanine. Talanta 23(5):383–386. https://doi.org/10.1016/0039-9140(76)80051-3

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Wang SF, Xie F (2006) An electrochemical sensor of non-electroactive drug 6-thioguanine based on the dsDNA/AET/Au. Sensors Actuators B Chem 120(1):238–244. https://doi.org/10.1016/j.snb.2006.02.012

    Article  CAS  Google Scholar 

  41. Mirmomtaz E, Ensafi AA, Karimi-Maleh H (2008) Electrocatalytic determination of 6-tioguanine at a p-aminophenol modified carbon paste electrode. Electroanalysis 20(18):1973–1979. https://doi.org/10.1002/elan.200804273

    Article  CAS  Google Scholar 

  42. Ensafi AA, Karimi-Maleh H (2010) Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem 640(1-2):75–83. https://doi.org/10.1016/j.jelechem.2010.01.010

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to BRNS-DAE (Grant No: 34/14/63/2014) and SERB-DST (Grant No: SB/FT/CS-178/2013) for financial assistance. We are also thankful to DST-FIST, Sprint Testing solutions-Mumbai and Thapar University for providing instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kainth, S., Basu, S. Quantitative Detection of Thiopurines by Inter-particle Distance-Dependent Properties of Gold Nanoparticles. Plasmonics 13, 1785–1793 (2018). https://doi.org/10.1007/s11468-018-0692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0692-8

Keywords

Navigation