Skip to main content
Log in

Nanofilmed Fourier-Transformed Spectrometer with the Interference of Surface Plasmon Wave

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A miniature Fourier-transformed spectrometer based on the subwavelength slit-groove configuration with the interference of surface plasmon wave is proposed. By gradually increasing the set distance of the slit and groove, the interference fringes with different optical path difference is obtained. By then adding the Fourier-transform process, the spectrum of the incident light is recovered. By analyzing the interference in the slit-groove structure, the theory of the spectrometer is obtained. With the finite difference time domain (FDTD) method, the structure parameters are optimized firstly and then the spectrometer in spectrum recovery is demonstrated and the resolution of 3.84 nm is achieved at the wavelength of 750 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grüneis H, Penker M, Höferl KM (2016) The full spectrum of climate change adaptation: testing an analytical framework in Tyrolean mountain agriculture (Austria). Spring 5(1848):1–13

    Google Scholar 

  2. Willigers BJA, Krogstad EJ, Wijbrans JR (Sep. 2001) Comparison of thermochronometers in a slowly cooled granulite terrain: Nagssugtoqidian Orogen, West Greenland. J Petrol 42(9):1729–1749. https://doi.org/10.1093/petrology/42.9.1729

    Article  CAS  Google Scholar 

  3. Tarugi P, Averna M (Jan. 2011) Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem 54:81–107. https://doi.org/10.1016/B978-0-12-387025-4.00004-2

    Article  CAS  PubMed  Google Scholar 

  4. Rossignol DA, Genuis SJ, Frye RE (Feb. 2014) Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 4:1–23

    Article  Google Scholar 

  5. Goold JC, Fish PJ (Apr. 1998) Broadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds. J Acoust Soc Am 103(4):2177–2184. https://doi.org/10.1121/1.421363

    Article  CAS  PubMed  Google Scholar 

  6. J. Sin, W. H. Lee, D. Popa, and H. E. Stephanou, “Assembled Fourier transform micro-spectrometer”, Proc. of SPIE, Vol. 6109, pp.610904–610908, Jan. 2006

  7. J. Antoszewski, A. Keating, K. Winchester, T. Nguyen, D. Silva, C. Musca, J. Dell, O. Samardzic and L. Faraone, “Tunable Fabry-Perot filters operating in the 3 to 5 um range for infrared micro-spectrometer applications”, Proc. of SPIE, Vol. 6186, pp.618608–618609, Jan. 2006

  8. Cheben P, Schmid JH, Delage A, Densmore A, Janz S, Lamontagne B, Lapointe J, Post E, Waldron P, Xu D-X (Mar. 2007) A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides. Opt Express 15(5):2299–2306. https://doi.org/10.1364/OE.15.002299

    Article  CAS  PubMed  Google Scholar 

  9. Xia Z, Eftekhar AA, Soltani M, Momeni B, Li Q, Chamanzar M, Yegnanarayanan S, Adibi A (Jun. 2011) High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express 19(13):12356–12364. https://doi.org/10.1364/OE.19.012356

    Article  CAS  PubMed  Google Scholar 

  10. C. Y. Huang and W. C. Wang, “Birefringent prism based Fourier transform spectrometer”, Opt. Letters, Vol. 37 No. 9, pp.1559–1561, May. 2012

  11. Xia L, Yang Z, Yin S, Deng Q, Du C (Jul. 2014) A method of realizing compact Fourier transform spectrometer without moving parts based on birefringent liquid crystal. Opt Eng 53(7):074109–074104. https://doi.org/10.1117/1.OE.53.7.074109

    Article  Google Scholar 

  12. Dastmalchi B, Tassin P, Koschny T, Soukoulis CM (Sep. 2016) A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mater 4(1):177–184. https://doi.org/10.1002/adom.201500446

    Article  CAS  Google Scholar 

  13. Khurgin JB (Jan. 2015) Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss 178:109–122. https://doi.org/10.1039/C4FD00193A

    Article  CAS  PubMed  Google Scholar 

  14. Lal S, Link S, Halas NJ (Jul. 2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. https://doi.org/10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  15. Han Z, Zhang Y, Bozhevolnyi SI (Jun. 2015) Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Opt Lett 40(11):2533–2536. https://doi.org/10.1364/OL.40.002533

    Article  PubMed  Google Scholar 

  16. Chen J, Li Z, Zhang X, Xiao J, Gong Q (Mar. 2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3(1):1451. https://doi.org/10.1038/srep01451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lalanne P, Hugonin JP (Aug. 2006) Interaction between optical nano-objects at metallo-dielectric interfaces. Nat Phys 2(8):551–556. https://doi.org/10.1038/nphys364

    Article  CAS  Google Scholar 

  18. Chen L, Robinson JT, Lipson M (Dec. 2006) Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. Opt Express 14(26):12629–12636. https://doi.org/10.1364/OE.14.012629

    Article  PubMed  Google Scholar 

  19. Palik E, Ghosh G (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  20. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (Sep. 2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13(18):6815–6820. https://doi.org/10.1364/OPEX.13.006815

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (61775213, 61504147) and West Light Foundation of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangping Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Du, C. Nanofilmed Fourier-Transformed Spectrometer with the Interference of Surface Plasmon Wave. Plasmonics 13, 1735–1739 (2018). https://doi.org/10.1007/s11468-017-0686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0686-y

Keywords

Navigation