Enhanced Thermal Stability and Biocompatibility of Gold Nanorods by Graphene Oxide

Abstract

In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C water bath. Our results indicate that while bare gold nanorods are highly vulnerable to elevated temperatures, graphene oxide and reduced graphene oxide-coated gold nanorods remain thermally stable with no structural changes. We also confirmed that the enhanced thermal stability is highly dependent on the concentration of deposited graphene oxide available on the surface of the gold nanorods. In addition, we performed an MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazoliumbromide) assay to make a comparison between the cytotoxicity of the nanohybrids and their primary building blocks on human dermal fibroblast cells as a normal cell line. We found evidence that graphene oxide can enhance the biocompatibility of the rods through covering toxic chemicals on the surface of them.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme 1
Fig. 3.
Fig. 4
Fig. 5

References

  1. 1.

    Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. https://doi.org/10.1038/nnano.2007.451

    CAS  Article  Google Scholar 

  2. 2.

    Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. https://doi.org/10.1021/ja803688x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. https://doi.org/10.1038/ncomms1067

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Chen Y-W, Su Y-L, Hu S-H, Chen S-Y (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105(Pt B):190–204. https://doi.org/10.1016/j.addr.2016.05.022

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Yang D, Feng L, Dougherty CA, Luker KE, Chen D, Cauble MA, Holl MMB, Luker GD, Ross BD, Liu Z (2016) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371. https://doi.org/10.1016/j.biomaterials.2016.07.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547. https://doi.org/10.1039/C2CS35342C

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199. https://doi.org/10.1016/j.addr.2011.03.005

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24(36):4811–4841. https://doi.org/10.1002/adma.201201690

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42(7):2679–2724. https://doi.org/10.1039/C2CS35367A

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45(11):3145–3187. https://doi.org/10.1039/C6CS00195E

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhao H, Ding R, Zhao X, Li Y, Qu L, Pei H, Yildirimer L, Wu Z, Zhang W (2017) Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today 22(9):1302–1317. https://doi.org/10.1016/j.drudis.2017.04.002

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Liu M, Shi M, Lu W, Zhu D, Li L, Gan L (2017) Core–shell reduced graphene oxide/MnOx@ carbon hollow nanospheres for high performance supercapacitor electrodes. Chem Eng J 313:518–526. https://doi.org/10.1016/j.cej.2016.12.091

    CAS  Article  Google Scholar 

  13. 13.

    Xu C, Yang D, Mei L, Li Q, Zhu H, Wang T (2013) Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl Mater Interfaces 5(24):12911–12920. https://doi.org/10.1021/am404714w

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Sun B, Wu J, Cui S, Zhu H, An W, Fu Q, Shao C, Yao A, Chen B, Shi D (2017) In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Res 10(1):37–48. https://doi.org/10.1007/s12274-016-1264-x

    CAS  Article  Google Scholar 

  15. 15.

    Moon H, Kumar D, Kim H, Sim C, Chang J-H, Kim J-M, Kim H, Lim D-K (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719. https://doi.org/10.1021/nn506516p

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Turcheniuk K, Dumych T, Bilyy R, Turcheniuk V, Bouckaert J, Vovk V, Chopyak V, Zaitsev V, Mariot P, Prevarskaya N (2016) Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv 6(2):1600–1610. https://doi.org/10.1039/C5RA24662H

    CAS  Article  Google Scholar 

  17. 17.

    Hu C, Rong J, Cui J, Yang Y, Yang L, Wang Y, Liu Y (2013) Fabrication of a graphene oxide–gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering. Carbon 51:255–264. https://doi.org/10.1016/j.carbon.2012.08.051

    CAS  Article  Google Scholar 

  18. 18.

    Vianna PG, Grasseschi D, Costa GK, Carvalho IC, Domingues SH, Fontana J, de Matos CJ (2016) Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy. ACS Photon 3(6):1027–1035. https://doi.org/10.1021/acsphotonics.6b00109

    CAS  Article  Google Scholar 

  19. 19.

    Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X (2015) Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 9(9):9199–9209. https://doi.org/10.1021/acsnano.5b03804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) Thermal reshaping of gold nanorods in micelles. J Phys Chem B 102(47):9370–9374. https://doi.org/10.1021/jp9831482

    CAS  Article  Google Scholar 

  21. 21.

    Petrova H, Perez Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8(7):814–821. https://doi.org/10.1039/B514644E

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Taylor AB, Siddiquee AM, Chon JW (2014) Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 8(12):12071–12079. https://doi.org/10.1021/nn5055283

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Khalavka Y, Ohm C, Sun L, Banhart F, Sönnichsen C (2007) Enhanced thermal stability of gold and silver nanorods by thin surface layers. J Phys Chem C 111(35):12886–12889. https://doi.org/10.1021/jp075230f

    CAS  Article  Google Scholar 

  24. 24.

    Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878. https://doi.org/10.1364/OE.18.008867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Canpean V, Gabudean A, Astilean S (2013) Enhanced thermal stability of gelatin coated gold nanorods in water solution. Colloids Surf A Physicochem Eng Asp 433:9–13. https://doi.org/10.1016/j.colsurfa.2013.03.072

    CAS  Article  Google Scholar 

  26. 26.

    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962. https://doi.org/10.1021/cm020732l

    CAS  Article  Google Scholar 

  27. 27.

    Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6(3):2804–2817. https://doi.org/10.1021/nn300315j

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  29. 29.

    Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432. https://doi.org/10.1021/jp100603h

    CAS  Article  Google Scholar 

  30. 30.

    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910. https://doi.org/10.1002/adma.200802789

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Joy NA, Janiszewski BK, Novak S, Johnson TW, S-H O, Raghunathan A, Hartley J, Carpenter MA (2013) Thermal stability of gold nanorods for high-temperature plasmonic sensing. J Phys Chem C 117(22):11718–11724. https://doi.org/10.1021/jp400607s

    CAS  Article  Google Scholar 

  32. 32.

    Wei Q, Ni H, Jin X, Yuan J (2015) Graphene oxide wrapped gold nanorods for enhanced photo-thermal stability. RSC Adv 5(68):54971–54977. https://doi.org/10.1039/C5RA08333H

    CAS  Article  Google Scholar 

  33. 33.

    Lim D-K, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS (2013) Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett 13(9):4075–4079. https://doi.org/10.1021/nl4014315

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Karker N, Dharmalingam G, Carpenter MA (2014) Thermal energy harvesting plasmonic based chemical sensors. ACS Nano 8(10):10953–10962. https://doi.org/10.1021/nn504870b

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Yang K, Feng L, Hong H, Cai W, Liu Z (2013) Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 8(12):2392–2403. https://doi.org/10.1038/nprot.2013.146

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    CAS  Article  Google Scholar 

  37. 37.

    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708. https://doi.org/10.1002/smll.200801546

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736. https://doi.org/10.1021/nn101390x

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Vahid Shirshahi or Reza Saber.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirshahi, V., Hatamie, S., Tabatabaei, S.N. et al. Enhanced Thermal Stability and Biocompatibility of Gold Nanorods by Graphene Oxide. Plasmonics 13, 1585–1594 (2018). https://doi.org/10.1007/s11468-017-0667-1

Download citation

Keywords

  • Nanohybrids
  • Gold nanorods
  • Graphene oxide
  • Thermal stability
  • Biocompatibility