, Volume 13, Issue 5, pp 1523–1534 | Cite as

Investigating the Characteristics of a Double Circular Ring Resonators Slow Light Device Based on the Plasmonics-Induced Transparency Coupled with Metal-Dielectric-Metal Waveguide System

  • Mehdi Hassani Keleshtery
  • Ali MirEmail author
  • Hassan Kaatuzian


We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.


Plasmonic Induced Transparency Waveguide Slow Light Ring Resonators 



The authors would like to express thanks to their colleagues in Photonic Research Laboratory (PRL), at Electrical Engineering Dept. of Amirkabir University of Technology (AUT) for their friendly support.


  1. 1.
    Atwater HA (2007) The promise of plasmonics. Sci Am Mag 296(4):56–63CrossRefGoogle Scholar
  2. 2.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  3. 3.
    Kaatuzian H, Photonics, 3rd printing (AKU Press, 2017), Vol 2, in Persian Google Scholar
  4. 4.
    Min Q, Chen C, Berini P, Gordon R (2010) Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications. Opt Express 18:19009–19019CrossRefGoogle Scholar
  5. 5.
    Jenkins FA, White HE (1981) “Fundamentals of Optics,” 4th Edition, McGraw-HillGoogle Scholar
  6. 6.
    Fedyanin DY, Krasavin AV, Arsenin AV, Zayats AV (2012) Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. Nano Lett 12:2459–2463CrossRefGoogle Scholar
  7. 7.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762CrossRefGoogle Scholar
  9. 9.
    Han Z (2010) Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides. Photonics Nanostruct Fundam Appl 8(3):172–176CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Darmawan S, Tobing LYM, Mei T, Zhang DH (2011) Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer. J Opt Soc Am B 28(1):28–36CrossRefGoogle Scholar
  11. 11.
    Zhu S, Lo GQ, Kwong DL (2012) Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Opt Exp 20(6):5867–5881CrossRefGoogle Scholar
  12. 12.
    Zhanghua H, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251CrossRefGoogle Scholar
  13. 13.
    Xu Y, Zhang J, Song G (2013) Slow surface plasmons in plasmonic grating wave guide. IEEE Photon Technol Let 25(5):410–413CrossRefGoogle Scholar
  14. 14.
    Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104(22):221114–1–221114-5CrossRefGoogle Scholar
  15. 15.
    Hassani Keleshtery M, Kaatuzian H, Mir A (2016) Analysis and investigation of slow light based on plasmonic induced transparency in metal-dielectric-metal ring resonator in a waveguide system with different geometrical designs. Opt Photon J 6(8B):177–184CrossRefGoogle Scholar
  16. 16.
    Wang Y, Wang J, Liu C, Luo Q, Zhang W, Gao S (2013) Plasmonic-induced transparency in metal–dielectric–metal waveguide bends. Appl Phys Express 6:082201CrossRefGoogle Scholar
  17. 17.
    Zhou QZ, He P, Xu J, Zhuang X, Li Y, Pan A (2014) Gradient index plasmonic ring resonator with high extinction ratio. Opt Commun 312:280–283CrossRefGoogle Scholar
  18. 18.
    Dupuis N, Lee BG, Rylyakov AV, Kuchta DM, Baks CW, Orcutt JS, Gill DM, Green WMJ, Schow CL (2015) Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach–Zehnder silicon photonic switches. J Lightw Technol 33(17):3597–3606CrossRefGoogle Scholar
  19. 19.
    Abdul-Wahab S, Ahmed A, Marikar F (2011) The environmental impact of gold mines: pollution by heavy metals. Cent Eur J Eng 2(2):304–313Google Scholar
  20. 20.
    Kelly PE (2014) “Properties of materials,” CRC Press, Taylor and Fransis is an imprint of Group, International Standard Book Number: 13:978–1–4822-0624-1Google Scholar
  21. 21.
    Smith WF, Hashemi J “Foundation of materials science and engineering,” 4th edition. McGraw-Hill. P. 509. ISBN0–07–295358-6Google Scholar
  22. 22.
    Chien F-T, Chen C-W, Lee T-C, Wang C-L, Cheng C-H, Kang T-K, Chiu H-C (2013) A novel self-aligned double-channel polysilicon thin-film transistor. IEEE Trans Electron Dev 60(2):799–804CrossRefGoogle Scholar
  23. 23.
    Lu Q, Zou C-L, Chen D, Zhou P, Wu G (2014) Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Opt Commun 319:141–146CrossRefGoogle Scholar
  24. 24.
    Keshavarz Moazzam M, Kaatuzian H (2015) Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch. Appl Opt 54(20):6199–6207CrossRefGoogle Scholar
  25. 25.
    Wang G, Zhang W, Gong Y, Liang J (2015) Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photon Technol Lett 27(1)CrossRefGoogle Scholar
  26. 26.
    Eftekharian A, Atikian H, Majedi AH (2013) Plasmonic superconducting nanowire single photon detector. Opt Exp 21(3):3043–3054CrossRefGoogle Scholar
  27. 27.
    Nielsen MP, Ashfar A, Cadien K, Elezzabi AY (2013) Plasmonic materials for metal-insulator-semiconductor-insulator-metal nanoplasmonic waveguides on silicon-on-insulator platform. Opt Mater 36:294–298CrossRefGoogle Scholar
  28. 28.
    Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmonic-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D Appl Phys 47(20):205101CrossRefGoogle Scholar
  29. 29.
    Han X, Wang T, Li X, Liu B, He Y, Tang J (2015) Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system. J Phys D: Appl Phys 48(10pp):235102CrossRefGoogle Scholar
  30. 30.
    Mote RG, Chu H-S, Bai P, Li E-P (2012) Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Opt Commun 285:3709–3713CrossRefGoogle Scholar
  31. 31.
    Sorger VJ, Ye Z, Oulton RF, Wang Y, Bartal G, Yin X, Zhang X (2011) Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun doi: 10.1038, ncomms 1315, ppGoogle Scholar
  32. 32.
    Hassani Keleshtery M, Kaatuzian H, Mir A, Zandi A (2017) Method proposing a slow light ring resonator with a metal-dielectric-metal waveguide system based on plasmonic induced transparency. Appl Opt 56(15):6199–6207Google Scholar
  33. 33.
    Hassan Kaatuzian, Ahmad Naseri Taheri (2015) Application of nano-scale plasmonic structures in design of stub filters-A step towards realization of plasmonic switches. INTECH, Book Chapter, Chapter 4, doi: Google Scholar
  34. 34.
    Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on metal-insulator-metal stub filter. Appl Opt 53(28):6546–6553CrossRefGoogle Scholar
  35. 35.
    Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J (2011) Surface plasmon polariton absorption modulator. Opt Exp 19(9):8855–8869CrossRefGoogle Scholar
  36. 36.
    Hu M, Wang F, Liang R, Zhou S, Xiao L (2015) Plasmonic-induced transparency based on plasmonic asymmetric dual side-coupled cavities. Elsevier Phys Lett A 379:581–584CrossRefGoogle Scholar
  37. 37.
    Zhan Sh, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D: Appl Phys. 47 205101 (6pp)CrossRefGoogle Scholar
  38. 38.
    Liu S-D, Yang Z, Liu R-P, Li X-Y (2011) Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity. Opt Express 19(16):15363CrossRefGoogle Scholar
  39. 39.
    Lu Y, Rhee JY, Jang WH, Lee YP (2010) Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt Express 18(20):20912–20917CrossRefGoogle Scholar
  40. 40.
    Olivieri A, Chen C, Hassan S, Lisicka-Skrzek E, Tait RN, Berini P (2015) Plasmonic nanostructured metal−oxide−semiconductor reflection modulators. Nano Lett 15:2304–2311CrossRefGoogle Scholar
  41. 41.
    Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19(9):8912CrossRefGoogle Scholar
  42. 42.
    Zhu S, Lo GQ, Kwong DL (2011) Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides. Appl Phys Lett 99(1–3):151114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electronics, Faculty of EngineeringLorestan UniversityKhoram-AbadIran
  2. 2.Photonics Research Laboratory (PRL), Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations