, Volume 13, Issue 4, pp 1209–1218 | Cite as

Design, Analysis, and Characterization of Designer Surface Plasmon Polariton-Based Dual-Band Antenna

  • Rahul Kumar JaiswalEmail author
  • Nidhi Pandit
  • Nagendra Prasad Pathak


This paper reports development, design, and analysis of designer (or spoof) surface plasmon polariton-based feeding configuration to excite a dual-band antenna. As an example, a planar transverse electric and magnetic horn antenna is designed and fed by the proposed transition structure. Designer surface plasmon polariton modes are supported by a metal surface at microwave frequency when it is corrugated with periodical grooves. An efficient transition for converting quasi-transverse electric and magnetic waves of microstrip line into spoof surface plasmon polariton (SSPP) waves has been designed in microwave frequency range using periodically corrugated metal strip. SSPP wave is confined at the teeth part of the corrugation. Simulated and measured reflection and transmission characteristics are in good agreement. The spoof SPP-fed dual-band antenna is designed, fabricated, and characterized in microwave anechoic chamber and measured results are coincident with simulated results.


Spoof surface plasmon polaritons (SSPP) Dual-band Antenna Microstrip Horn antenna Coplanar waveguide (CPW) Metamaterial Anechoic chamber Quasi-transverse electric and magnetic (QTEM) 


  1. 1.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  2. 2.
    Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 1(1):54Google Scholar
  3. 3.
    Powell JR (2008) The quantum limit to Moore’s law. Proc IEEE 96(8):1247–1248CrossRefGoogle Scholar
  4. 4.
    Zhang HC, Fan Y, Guo J, Fu X, Cui TJ (2015) Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photon 3:139–146CrossRefGoogle Scholar
  5. 5.
    Xu JJ, Yin JY, Zhang HC, Cui TJ (2016) Compact feeding network for array radiations of spoof surface plasmon polaritons. Sci Rep 6(22692). doi: 10.1038/srep22692
  6. 6.
    Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62CrossRefPubMedGoogle Scholar
  7. 7.
    Web ISI, This S, Press H, York N, Nw A (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Sci Rev 311:189–194Google Scholar
  8. 8.
    Liu H, Wang B, Ke L, Deng J, Chum CC, Teo SL, Shen L, Maier SA, Teng J (2012) High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett 12(3):1549–1554CrossRefPubMedGoogle Scholar
  9. 9.
    Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(131111). doi: 10.1063/1.3698133
  10. 10.
    Atwater H, Polman A, Kosten E, Callahan D, Spinelli P, Eisler C, Escarra M, Warmann E, Flowers C (2013) Nanophotonic design principles for ultrahigh efficiency photovoltaics. AIP Conf Proc 1519:17–21CrossRefGoogle Scholar
  11. 11.
    Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA (2012) Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun 3. doi: 10.1038/ncomms2109
  12. 12.
    Zhang S, Xiong Y, Bartal G, Yin X, Zhang X (2011) Magnetized plasma for reconfigurable subdiffraction imaging. Phys Rev Lett 106(243901):1–4Google Scholar
  13. 13.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefPubMedGoogle Scholar
  14. 14.
    Liu N, Wen F, Zhao Y, Wang Y, Nordlander P, Halas NJ, Alu A (2013) Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett 13(1):142–147CrossRefPubMedGoogle Scholar
  15. 15.
    Thirupathaiah K, Pathak NP, Rastogi V (2013) Concurrent dual band filters using plasmonic slot waveguide. IEEE Photon Technol Lett 25(22):2217–2220CrossRefGoogle Scholar
  16. 16.
    Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848CrossRefPubMedGoogle Scholar
  17. 17.
    Hibbins AP, Evans BR, Sambles JR (2005) Experimental verification of designer surface Plasmons. Sci Rep 308(5722):670–672Google Scholar
  18. 18.
    Rusina A, Durach M, Stockman MI (2010) Theory of spoof plasmons in real metals. Appl Phys A Mater Sci Process 100(2):375–378CrossRefGoogle Scholar
  19. 19.
    Gao X, Hui Shi J, Shen X, Feng Ma H, XiAng Jiang W, Li L, Cui TJ (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett 102(15):9–13Google Scholar
  20. 20.
    Shen X, Jun T, Martin-cano D, Garcia-vidal FJ (2013) Conformal surface plasmons propagating on ultrathin and flexible films. PNAS 110(1):40–45CrossRefPubMedGoogle Scholar
  21. 21.
    Ma HF, Shen X, Cheng Q, Jiang WX, Cui TJ (2014) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8(1):146–151CrossRefGoogle Scholar
  22. 22.
    Cao Pan B, Liao Z, Zhao J, Jun Cui T, Stewart ME (2014) Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Chem Rev 108(2):494–521Google Scholar
  23. 23.
    Zhang W, Zhu G, Sun L, Lin F (2015) Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. J Appl Phys 106(021104). doi: 10.1063/1.4905675
  24. 24.
    Li Y, Yin X, Zhao H, Wang L, Yang M (2014) Radiation enhanced broadband planar tem horn antenna IEEE Asia Pacific Microwave Conference 720–722Google Scholar
  25. 25.
    Esquius-Morote M, Fuchs B, Zürcher JF, Mosig JR (2013) Novel thin and compact H-plane SIW horn antenna. IEEE Trans Antennas Propag 61(6):2911–2920CrossRefGoogle Scholar
  26. 26.
    Schantz HG, Jeon J (2012) Standard gain UWB planar horn antennas IEEE International Conference on UltraWideband. doi  10.1109/ICUWB.2012.6340489
  27. 27.
    Chang L-CT, Burnside WD (2000) An ultrawide-bandwidth tapered resistive TEM horn antenna. IEEE Trans Antennas Propag 48(12):1848–1857CrossRefGoogle Scholar
  28. 28.
    Esfandiarpour S, Mallahzadeh A (2011) Wideband planar horn antenna using substrate integrated waveguide technique. IEEE APMC 1969–1972Google Scholar
  29. 29.
    Shu L, Xin-yue Z, Xing-qi Z, Xue-ying Z, Run-nan C, Guan-long H, Li-wen J, Wen-bin Z (2011) High-gain planar TEM horn antenna fed by balanced microstrip line. CHINACOM. doi: 10.1109/ChinaCom.2011.6158284
  30. 30.
    Turk AS (2004) Ultra-wideband TEM horn design for ground penetrating impulse radar systems. Microw Opt Technol Lett 41(5):333–336CrossRefGoogle Scholar
  31. 31.
    Turk AS, Nazli H (2008) Hyper-wide band tem horn array design for multi band ground penetrating impulse radar. Microw Opt Technol Lett 50(1):76–81CrossRefGoogle Scholar
  32. 32.
    Sironen M, Qian Y, Itoh T (2001) A 60 GHz conical horn antenna excited with quasi-Yagi antenna. IEEE MTT-S Int Symp Digest 1:547–550Google Scholar
  33. 33.
    Rahman AA, Verma AK, Omar AS (2003) High gain wideband compact microstrip antenna with quasi-planner surface mount horn. IEEE MTT-S Int Microwave Symp Digest 1:571574 Google Scholar
  34. 34.
    Ranga Y, Verma AK, Esselle KP (2010) Planar monopole fed, surface mounted quasi-TEM horn antenna for UWB systems. IEEE Trans Antennas Propag 58(7):2436–2439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations